login
A008291
Triangle of rencontres numbers.
26
1, 2, 3, 9, 8, 6, 44, 45, 20, 10, 265, 264, 135, 40, 15, 1854, 1855, 924, 315, 70, 21, 14833, 14832, 7420, 2464, 630, 112, 28, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 14684570
OFFSET
2,2
COMMENTS
T(n,k) = number of permutations of n elements with k fixed points.
T(n,n-1)=0 and T(n,n)=1 are omitted from the array. - Geoffrey Critzer, Nov 28 2011.
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
Kaufmann, Arnold. "Introduction a la combinatorique en vue des applications." Dunod, Paris, 1968. See p. 92.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
LINKS
FindStat - Combinatorial Statistic Finder, The number of fixed points of a permutation
I. Kaplansky, Symbolic solution of certain problems in permutations, Bull. Amer. Math. Soc., 50 (1944), 906-914.
FORMULA
T(n,k) = binomial(n,k)*A000166(n-k) = A008290(n,k).
E.g.f. for column k: (x^k/k!)(exp(-x)/(1-x)). - Geoffrey Critzer, Nov 28 2011
Row generating polynomials appear to be given by -1 + sum {k = 0..n} (-1)^(n+k)*C(n,k)*(1+k*x)^(n-k)*(2+(k-1)*x)^k. - Peter Bala, Dec 29 2011
EXAMPLE
Triangle begins:
1
2 3
9 8 6
44 45 20 10
265 264 135 40 15
1854 1855 924 315 70 21
14833 14832 7420 2464 630 112 28
133496 133497 66744 22260 5544 1134 168 36
...
MAPLE
T:= proc(n, k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
(T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
end:
seq(seq(T(n, k), k=0..n-2), n=2..12); # Alois P. Heinz, Mar 17 2013
MATHEMATICA
Prepend[Flatten[f[list_]:=Select[list, #>1&]; Map[f, Drop[Transpose[Table[d = Exp[-x]/(1 - x); Range[0, 10]! CoefficientList[Series[d x^k/k!, {x, 0, 10}], x], {k, 0, 8}]], 3]]], 1] (* Geoffrey Critzer, Nov 28 2011 *)
PROG
(PARI) T(n, k)= if(k<0 || k>n, 0, n!/k!*sum(i=0, n-k, (-1)^i/i!))
CROSSREFS
Row sums give A033312.
Cf. A320582.
Sequence in context: A152812 A246825 A086565 * A373966 A261525 A122665
KEYWORD
nonn,tabl,nice,easy
EXTENSIONS
Comments and more terms from Michael Somos, Apr 26 2000
STATUS
approved