login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008271
Number of performances of n fragments in Stockhausen problem.
2
0, 2, 114, 5844, 380900, 32817990, 3679720422, 524366318504, 92857556215944, 20037507147592650, 5180981746936701530, 1582222025035216228092, 563668692910591272692844, 231745357332413891454727694
OFFSET
1,2
LINKS
R. C. Read, Combinatorial problems in theory of music, Discrete Math. 167 (1997), 543-551.
Ronald C. Read, Lily Yen, A note on the Stockhausen problem, J. Comb. Theory, Ser. A 76, No. 1 (1996), 1-10.
FORMULA
Recurrence: (n-2)*(3*n-7)*a(n) = (n-1)*n*(6*n^2 - 17*n + 16)*a(n-1) - (n-1)*n*(12*n^2 - 37*n + 29)*a(n-2) + 2*(n-2)*(n-1)*n*(3*n-4)*a(n-3). - Vaclav Kotesovec, Feb 18 2015
a(n) ~ sqrt(Pi) * 2^(n+1) * n^(2*n+3/2) / exp(2*n). - Vaclav Kotesovec, Feb 18 2015
MATHEMATICA
Table[n*Sum[Binomial[n-1, i]*(2*i)!*i*(2*i-1)/2^i, {i, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Feb 18 2015 after R. C. Read *)
PROG
(PARI) for(n=1, 25, print1(n*sum(k=0, n-1, binomial(n-1, k)*(2*k)!*k*(2*k-1)/2^k), ", ")) \\ G. C. Greubel, Apr 11 2017
CROSSREFS
Sequence in context: A230471 A140986 A157068 * A362575 A209184 A356724
KEYWORD
nonn
AUTHOR
STATUS
approved