login
A007854
Expansion of 1/(1 - 3*x*C(x)), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) = g.f. for the Catalan numbers A000108.
17
1, 3, 12, 51, 222, 978, 4338, 19323, 86310, 386250, 1730832, 7763550, 34847796, 156503064, 703149438, 3160160811, 14206181382, 63874779714, 287242041528, 1291872728826, 5810776384932, 26138647551564, 117587214581508
OFFSET
0,2
COMMENTS
Chains in rooted plane trees on n nodes.
The Hankel transform of the aerated sequence with g.f. 1/(1-3x^2c(x^2)) is also 3^n. In general, the expansions of 1/(1-k*x*c(x)) and 1/(1-k*x^2*c(x^2)) have Hankel transform k^n. - Paul Barry, Jan 20 2007
Binomial transform of A112657. - Philippe Deléham, Nov 25 2007
Row sums of the Riordan matrix (1/sqrt(1-4x),(1-sqrt(1-4x))/(2*sqrt(1-4x))) (A116395). - Emanuele Munarini, Apr 26 2011
Numbers have the same parity as the Catalan numbers, that is, a(n) is even except for n of the form 2^m - 1. Follows from C(x) = 1/(1 - x*C(x)) = 1/(1 - 3*x*C(x)) (mod 2). - Peter Bala, Jul 24 2016
LINKS
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
Martin Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740.
J.-C. Novelli and J.-Y. Thibon, Free quasi-symmetric functions of arbitrary level, arXiv:math/0405597 [math.CO], 2004.
FORMULA
a(n) = (9*a(n-1)-3*A000108(n-2))/2 = 3*A049027(n-1) = A067336(n-1)*3/2 = A049027(n-1) + A067336(n-1) = A067347(3, n-1). - Henry Bottomley, Jan 16 2002
a(n) = Sum_{k>=0} A106566(n, k)*3^k. - Philippe Deléham, Aug 11 2005
The Hankel transform of this sequence is A000244 = [1, 3, 9, 27, 81, 243, 729, ...](powers of 3). - Philippe Deléham, Nov 26 2006
a(n) = Sum_{k = 0..n} C(2n,n-k)(2k+1)2^k/(n+k+1). - Paul Barry, Jan 20 2007
a(n) = Sum_{k = 0..n} A039599(n,k)*2^k. - Philippe Deléham, Sep 08 2007
a(n) = Sum_{k = 0..n} A116395(n,k). - Vladimir Kruchinin, Mar 09 2011
From Emanuele Munarini, Apr 26 2011 (Start)
a(n) = Sum_{k = 1..n} C(2*n-k,n-k)*(k*3^k)/(2*n-k), for n>0.
a(n) = (1/4)*(9/2)^n-3*Sum_{k=0..n} C(2*k,k)/(2k-1)*(9/2)^(n-k).
D-finite with recurrence: 2*(n+2)*a(n+2)-(17*n+22)*a(n+1)+18*(2*n+1)*a(n)=0. (End)
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = upper left term in M^n, M = the infinite square production matrix:
3, 3, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
MATHEMATICA
CoefficientList[Series[(1+3Sqrt[1-4x])/(4-18x), {x, 0, 25}], x]) (* Emanuele Munarini, Apr 26 2011 *)
nm = 25; t = NestList[Append[Accumulate[#], 3 Total[#]] &, {1}, nm];
Table[t[[n, n]], {n, nm}] (*similar to generating Catalan's triangle A009766*)
(* Li Han, Oct 23 2020 *)
PROG
(Maxima) makelist(kron_delta(n, 0)+sum(binomial(2*n-k, n-k)*(k*3^k)/(2*n-k), k, 1, n), n, 0, 12); /* Emanuele Munarini, Apr 26 2011 */
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Henry Bottomley, Jan 16 2002
STATUS
approved