OFFSET
0,2
COMMENTS
(12n^2 + 6n + 1)^2 divides a(6n+1), where (12n^2 + 6n + 1) = (2n+1)^3 - (2n)^3 = A127854(n) = A003215(2n) are the hex (or centered hexagonal) numbers. The prime numbers of the form 12n^2 + 6n + 1 belong to A002407. - Alexander Adamchuk, Apr 09 2007
REFERENCES
Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).
LINKS
Doug Bell, Table of n, a(n) for n = 0..100
Andrew Cusumano, Problem H-656, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 45, No. 2 (2007), p. 187; A Sequence Tending To e, Solution to Problem H-656, ibid., Vol. 46-47, No. 3 (2008/2009), pp. 285-287.
Ronald K. Hoeflin, Mega Test. [Wayback Machine link]
Eric Weisstein's World of Mathematics, Power Difference Prime.
FORMULA
a(n) = abs(discriminant(x^(n+1)-x+1)).
E.g.f.: W(-x)/(1+W(-x)) - W(-x)/((1+W(-x))^3*x) where W is the Lambert W function. - Robert Israel, Aug 19 2015
Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - Amiram Eldar, Jan 03 2022
EXAMPLE
a(14) = 10809131718965763 = 3 * 61^2 * 968299894201.
MAPLE
seq( `if`(n=0, 1, (n+1)^(n+1) -n^n), n=0..20); # G. C. Greubel, Mar 05 2020
MATHEMATICA
Join[{1}, Table[(n+1)^(n+1)-n^n, {n, 20}]] (* Harvey P. Dale, Feb. 09 2011 *)
Differences[Table[n^n, {n, 0, 20}]] (* Charles R Greathouse IV, Feb 09 2011 *)
PROG
(PARI) first(m)=vector(m, i, i--; (i+1)^(i+1) - i^i) /* Anders Hellström, Aug 18 2015 */
(Magma) [1] cat [(n+1)^(n+1)-n^n: n in [1..20]]; // Vincenzo Librandi, Aug 19 2015
(Sage) [1]+[(n+1)^(n+1) -n^n for n in (1..20)] # G. C. Greubel, Mar 05 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter McCormack (peter.mccormack(AT)its.csiro.au)
STATUS
approved