OFFSET
1,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
MAPLE
with(numtheory): mob:=proc(m, n) if irem(m, n) = 0 then mobius(m/n) else 0: fi: end: MOBIUS:=proc(a) local b, i, d: if whattype(a) <> list then RETURN([]); fi: b:=[]: for i to nops(a) do b:=[op(b), add( mob(i, d)*a[d], d=1..i)]: od: RETURN(b); end: s:=[1]: for n from 1 to 100 do s:=[1, op(MOBIUS(MOBIUS(s)))] od: op(s); # With Transforms mob, MOBIUS (Pab Ter)
# second Maple program:
with(numtheory): mobtr:= proc(p) proc(n) option remember;
add(mobius(n/d)*p(d), d=divisors(n)) end end:
a:= proc(n) option remember; `if`(n<2, 1, aa(n-1)) end:
aa:= (mobtr@@2)(a):
seq(a(n), n=1..100); # Alois P. Heinz, Jun 22 2012
MATHEMATICA
mobtr[p_] := Module[{f}, f[n_] := f[n] = Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; f]; a[n_] := a[n] = If[n < 2, 1, aa[n-1]]; aa = mobtr @ mobtr @ a; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 11 2005
STATUS
approved