login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007311
Reversion of o.g.f. for Bell numbers (A000110) omitting a(0)=1.
(Formerly M0676)
2
1, -2, 3, -5, 7, -14, 11, -66, -127, -992, -5029, -30899, -193321, -1285300, -8942561, -65113125, -494605857, -3911658640, -32145949441, -274036507173, -2419502677445, -22093077575496, -208364964369913, -2027216779571754, -20323053380033763, -209715614081160850
OFFSET
1,2
COMMENTS
As the definition says, this entry deliberately omits the zero-th term 1. - N. J. A. Sloane, Jun 16 2021
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} Bell(k) * A(x)^k. - Ilya Gutkovskiy, Apr 22 2020
MAPLE
read transforms; A := series(exp(exp(x)-1), x, 60); SERIESTOLISTMULT(%); subsop(1=NULL, %); REVERT(%);
# Alternative, using function CompInv from A357588:
CompInv(26, n -> combinat:-bell(n)); # Peter Luschny, Oct 05 2022
PROG
(PARI) a(n)=if(n<1, 0, polcoeff(serreverse(-1+serlaplace(exp(exp(x+x*O(x^n))-1))), n))
CROSSREFS
Cf. A000110.
Sequence in context: A309249 A294727 A348352 * A031345 A206702 A279953
KEYWORD
sign
EXTENSIONS
Signs corrected Dec 24 2001
STATUS
approved