OFFSET
1,2
COMMENTS
A golygon of order N is a closed path along the streets of the Manhattan grid with successive edge lengths of 1,2,3,...,N (returning to the starting point after the edge of length N), and which makes a 90-degree turn (left or right) after each edge.
It is known that the order N must be a multiple of 8.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 92.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..100
A. K. Dewdney, An odd journey along even roads leads to home in Golygon City, Mathematical Recreations Column, Scientific American, July 1990, pp. 118-121.
A. K. Dewdney, Illustration of the unique golygon of order 8, from the article "An odd journey along even roads leads to home in Golygon City", Mathematical Recreations Column, Scientific American, July 1990, pp. 118-121.
A. K. Dewdney, Illustration of the 28 golygons of order 16, from the article "An odd journey along even roads leads to home in Golygon City", Mathematical Recreations Column, Scientific American, July 1990, pp. 118-121.
Adam P. Goucher, Golygons and golyhedra
L. Sallows, M. Gardner, R. K. Guy and D. E. Knuth, Serial isogons of 90 degrees, Math. Mag. 64 (1991), 315-324.
Eric Weisstein's World of Mathematics, Golygon
FORMULA
a(n) = A006718(n)/4. - Charles R Greathouse IV, Apr 29 2012
a(n) ~ 3*2^(8*n-6)/(Pi*n^2*(4*n+1)). - Vaclav Kotesovec, Dec 09 2013
MATHEMATICA
p1[n_] := Product[x^k + 1, {k, 1, n - 1, 2}] // Expand; p2[n_] := Product[x^k + 1, {k, 1, n/2}] // Expand; c[n_] := Coefficient[p1[n], x, n^2/8] * Coefficient[p2[n], x, n (n/2 + 1)/8]; a[n_] := c[8*n]/4; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Jul 24 2013, after Eric W. Weisstein *)
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Two more terms from N. J. A. Sloane (from the reference), May 23 2005
STATUS
approved