OFFSET
1,1
COMMENTS
This is the 1-additive sequence with base {4,5}. Apart from three extra terms (4, 14, 24) in the initial segment, this breaks up naturally into segments of 32 terms each. [Finch, 1992]. - N. J. A. Sloane, Aug 12 2015
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 145-151.
R. K. Guy, "s-Additive sequences," preprint, 1994.
R. K. Guy, Unsolved Problems in Number Theory, Section C4.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n=1..1000
Experimental Mathematics, Home Page
Steven R. Finch, Stolarsky-Harborth Constant [Broken link]
Steven R. Finch, Stolarsky-Harborth Constant [From the Wayback machine]
Steven R. Finch, Patterns in 1-additive sequences, Experimental Mathematics 1 (1992), 57-63.
R. K. Guy, s-Additive sequences, Preprint, 1994. (Annotated scanned copy)
R. Queneau, Sur les suites s-additives, J. Combin. Theory, A12 (1972), 31-71.
Eric Weisstein's World of Mathematics, Ulam Sequence
Wikipedia, Ulam number
FORMULA
For n>9, a(n+32) = a(n) + 192. - T. D. Noe, Jan 21 2008
MATHEMATICA
s = {4, 5}; n0 = 9; dn = 32; m = 192; Do[ AppendTo[s, n = Last[s]; While[n++; Length[ DeleteCases[ Intersection[s, n - s], n/2, 1, 1]] != 2]; n], {n0 + dn}]; Clear[a]; a[n_] := a[n] = If[n <= n0 + dn, s[[n]], a[n - dn] + m]; Table[a[n], {n, 1, 200}] (* Jean-François Alcover, Apr 03 2013 *)
PROG
(Haskell)
a006844 n = a006844_list !! (n-1)
a006844_list = 4 : 5 : ulam 2 5 a006844_list
-- Function ulam as defined in A002858.
-- Reinhard Zumkeller, Nov 03 2011
CROSSREFS
KEYWORD
easy,nonn,nice
AUTHOR
STATUS
approved