login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006824
Number of connected regular bipartite graphs of degree 4 with 2n nodes.
(Formerly M3493)
4
1, 1, 4, 14, 129, 1980, 62611, 2806490, 158937213, 10773251972, 855658082615, 78558949838723, 8251166737356319, 982806379842257309, 131756174189661102281, 19748565896506014747623, 3289970433888731383271400, 605948436052375098046655323, 122796503871896458570959144266
OFFSET
4,3
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 648.
I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
H. Gropp, On tactical configurations, regular bipartite graphs and (v,k,even)-designs, Discr. Math., 155 (1996), 81-98.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
FORMULA
Inverse Euler transform of A333730. - Andrew Howroyd, Apr 03 2020
CROSSREFS
Column 4 of A008326.
Sequence in context: A137048 A137056 A302021 * A333730 A344201 A254718
KEYWORD
nonn,hard,nice
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Apr 03 2020
STATUS
approved