login
A006390
Number of unrooted loopless planar n-edge maps.
(Formerly M1468)
3
1, 1, 2, 5, 14, 49, 240, 1259, 7570, 47996, 319518, 2199295, 15571610, 112773478, 832809504, 6253673323, 47650870538, 367784975116, 2871331929096, 22647192990256, 180277915464664, 1447060793168493, 11703567787559680, 95312765368320637, 781151020141584190
OFFSET
0,3
COMMENTS
By duality, also the number of unrooted (sensed) isthmusless planar n-edge maps. An isthmus may also be called a bridge. - Andrew Howroyd, Mar 28 2021
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
V. A. Liskovets and T. R. S. Walsh, Counting Unrooted Loopless Planar Maps [Extended abstract]
V. A. Liskovets and T. R. S. Walsh, Counting unrooted loopless planar maps, Europ. J. Combin., 26:5 (2005), 651-663.
Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
FORMULA
a(n) = (1/(2n))*[2(4n+1)*binomial(4n, n)/((n+1)*(3n+1)*(3n+2)) + Sum_{0<k<n, k|n}phi(n/k)*binomial(4k, k)+q(n)] where phi is the Euler function (A000010), q(n)=binomial(2n, (n-2)/2) if n is even and q(n)=2n*binomial(2n, (n-1)/2)/(n+1) if n is odd.
MATHEMATICA
a[n_] := If[n==0, 1, (1/(2n))(Sum[Binomial[4k, k] EulerPhi[n/k] Boole[ 0<k<n], {k, Divisors[n]}] + 2(4n+1) Binomial[4n, n]/((n+1)(3n+1)(3n+2)) + q[n])];
q[n_] := If[EvenQ[n], Binomial[2n, (n-2)/2], 2n Binomial[2n, (n-1)/2]/ (n+1)];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 29 2019 *)
PROG
(PARI) a(n) = {if(n==0, 1, (sumdiv(n, d, if(d<n, 1, 2*(4*n+1)/((n+1)*(3*n+1)*(3*n+2))) * eulerphi(n/d) * binomial(4*d, d)) + if(n%2, 2*n/(n+1), 1)*binomial(2*n, (n-1)\2))/(2*n))} \\ Andrew Howroyd, Mar 28 2021
CROSSREFS
Cf. A000010, A000260 (rooted), A006391 (unsensed case), A103941 (with distinguished face), A103942 (with distinguished vertex).
Sequence in context: A079452 A081920 A224978 * A100597 A352184 A022562
KEYWORD
nonn
EXTENSIONS
More terms from Valery A. Liskovets, Dec 01 2003
a(17) and a(19) corrected by Sean A. Irvine, Mar 26 2017
STATUS
approved