login
A006320
Royal paths in a lattice.
(Formerly M4200)
5
1, 6, 30, 146, 714, 3534, 17718, 89898, 461010, 2386390, 12455118, 65478978, 346448538, 1843520670, 9859734630, 52974158938, 285791932578, 1547585781414, 8408765223294, 45830521556466, 250501529133930, 1372777379874926, 7541129471504790, 41518462993275786
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973).
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
S.-n. Zheng and S.-l. Yang, On the-Shifted Central Coefficients of Riordan Matrices, Journal of Applied Mathematics, Volume 2014, Article ID 848374, 8 pages.
FORMULA
3-fold convolution of the large Schroeder numbers (A006318). G.f.: R^3, where R = [1-z-sqrt(1-6z+z^2)]/(2z) is the g.f. of A006318. - Emeric Deutsch, Mar 15 2004
a(n) = (3/n)*sum(binomial(n, j)*binomial(n+2+j, n-1), j=0..n) (n>0). - Emeric Deutsch, Aug 19 2004
Recurrence: (n+3)*(5*n-1)*a(n) = 2*(15*n^2+20*n+13)*a(n-1) - (5*n^2+5*n-24)*a(n-2) + (n-3)*a(n-3). - Vaclav Kotesovec, Oct 05 2012
a(n) ~ 3 * (1 + sqrt(2))^(2*n+3) / (2^(3/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 05 2012, simplified Dec 24 2017
MAPLE
1, seq(3*sum(binomial(n, j)*binomial(n+2+j, n-1), j=0..n)/n, n=1..18);
MATHEMATICA
Table[SeriesCoefficient[(1-x-Sqrt[1-6*x+x^2])^3/(8*x^3), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 05 2012 *)
CROSSREFS
Third diagonal of A033877.
Cf. A006318.
Sequence in context: A316593 A089817 A364460 * A319377 A079738 A127741
KEYWORD
nonn,changed
STATUS
approved