login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006276
Pierce expansion of (3 - sqrt(5))/2.
(Formerly M1298)
14
2, 4, 17, 19, 5777, 5779, 192900153617, 192900153619, 7177905237579946589743592924684177, 7177905237579946589743592924684179, 369822356418414944143680173221426891716916679027557977938929258031490127514207143830378340325399155217
OFFSET
0,1
COMMENTS
From Peter Bala, Nov 22 2012: (Start)
For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x.
Let x = (sqrt(5) - 1)/2, the reciprocal of the golden ratio, and let X = (3 - sqrt(5))/2 so that X = x^2. The Pierce expansion of X^(3^n) is [a(2*n), a(2*n+1), a(2*n+2), ...]. The Pierce expansion of x is A118242 = [1, a(0), a(1), a(2), ...]. The Pierce expansion of x^3 is [a(1), a(2), a(3), ...]. In general, the Pierce expansion of x^(3^n) for n >= 1 is [a(1)*a(3)*...*a(2*n-1), a(2*n), a(2*n+1), a(2*n+2), ...] = [sqrt(a(2*n) - 1), a(2*n), a(2*n+1), a(2*n+2), ...]. Some examples of the associated alternating series are given below.
(End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. A. Pierce, On an algorithm and its use in approximating roots of algebraic equations, Amer. Math. Monthly, Vol. 36 No. 10, (1929) p.523-525.
Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
Eric Weisstein's World of Mathematics, Pierce Expansion
FORMULA
Let c(0)=3, c(n+1) = c(n)^3-3*c(n) [A001999]; then this sequence is c(0)-1, c(0)+1, c(1)-1, c(1)+1, c(2)-1, c(2)+1, ......
a(n) = 2*F(2*3^floor(n/2)+1)-F(2*3^floor(n/2))-(-1)^n where F(k) denotes the k-th Fibonacci number A000045(k)
Let u(0)=(1+sqrt(5))/2 and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)). - Benoit Cloitre, Mar 09 2004
a(2*n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n) - 1.
a(2*n+1) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n) + 1. - Peter Bala, Nov 22 2012
EXAMPLE
From Peter Bala, Nov 22 2012: (Start)
Let x = (sqrt(5) - 1)/2. We have the alternating series expansions
x = 1 - 1/2 + 1/(2*4) - 1/(2*4*17) + 1/(2*4*17*19) - ...
x^2 = 1/2 - 1/(2*4) + 1/(2*4*17) - 1/(2*4*17*19) + ...
x^6 = 1/17 - 1/(17*19) + 1/(17*19*5777) - ...
as well as
x^3 = 1/4 - 1/(4*17) + 1/(4*17*19) - 1/(4*17*19*5777) + ...
4*x^9 = 1/19 - 1/(19*5777) + 1/(19*5777*5779) - ...
4*19*x^27 = 1/5779 - 1/(5779*192900153617) + ....
(End)
MATHEMATICA
Table[c=2*3^Floor[n/2]; 2*Fibonacci[c+1]-Fibonacci[c]-(-1)^n, {n, 0, 10}] (* Harvey P. Dale, Oct 22 2013 *)
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[(3 - Sqrt[5])/2, 7!], 10] (* G. C. Greubel, Nov 14 2016 *)
PROG
(PARI) r=(1+sqrt(5))/2; for(n=1, 10, r=r/(r-floor(r)) print1(floor(r), ", "))
CROSSREFS
Cf. A118242.
Sequence in context: A208132 A254206 A118242 * A318367 A317488 A103051
KEYWORD
nonn,easy,changed
EXTENSIONS
More terms from James A. Sellers, May 19 2000
STATUS
approved