login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006121
Sum of Gaussian binomial coefficients [ n,k ] for q=7.
(Formerly M1984)
7
1, 2, 10, 116, 3652, 285704, 61946920, 33736398032, 51083363186704, 194585754101247008, 2061787082699360148640, 54969782721182164414355264
OFFSET
0,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
a(n) = 2*a(n-1)+(7^(n-1)-1)*a(n-2), (Goldman + Rota, 1969). - Vaclav Kotesovec, Aug 21 2013
a(n) ~ c * 7^(n^2/4), where c = EllipticTheta[3,0,1/7]/QPochhammer[1/7,1/7] = 1.537469386940... if n is even and c = EllipticTheta[2,0,1/7]/QPochhammer[1/7,1/7] = 1.499386995418... if n is odd. - Vaclav Kotesovec, Aug 21 2013
MATHEMATICA
Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(7^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
Table[Sum[QBinomial[n, k, 7], {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2016 *)
PROG
(Magma) [n le 2 select n else 2*Self(n-1)+(7^(n-2)-1)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 13 2016
CROSSREFS
Sequence in context: A261496 A347014 A356514 * A110951 A172477 A265942
KEYWORD
nonn
STATUS
approved