login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006107
Gaussian binomial coefficient [ n,4 ] for q = 4.
(Formerly M5445)
1
1, 341, 93093, 24208613, 6221613541, 1594283908581, 408235958349285, 104514759495347685, 26756185103024942565, 6849609413493939400165, 1753501675591663698472421, 448896535558672700374937061, 114917519925881846404167134693
OFFSET
4,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
G.f.: x^4/((1-x)*(1-4*x)*(1-16*x)*(1-64*x)*(1-256*x)). - Vincenzo Librandi, Aug 07 2016
a(n) = Product_{i=1..4} (4^(n-i+1)-1)/(4^i-1), by definition. - Vincenzo Librandi, Aug 07 2016
a(n) = (4^n-64)*(4^n-16)*(4^n-4)*(4^n-1)/2961100800. - Robert Israel, Feb 01 2018
MAPLE
seq((4^n-64)*(4^n-16)*(4^n-4)*(4^n-1)/2961100800, n=4..30); # Robert Israel, Feb 01 2018
MATHEMATICA
Table[QBinomial[n, 4, 4], {n, 4, 20}] (* Vincenzo Librandi, Aug 07 2016 *)
PROG
(Sage) [gaussian_binomial(n, 4, 4) for n in range(4, 14)] # Zerinvary Lajos, May 27 2009
(Magma) r:=4; q:=4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016
CROSSREFS
Sequence in context: A289305 A309285 A317556 * A015371 A328665 A163582
KEYWORD
nonn,easy
STATUS
approved