Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4912 #43 Apr 13 2022 13:25:18
%S 1,13,130,1210,11011,99463,896260,8069620,72636421,653757313,
%T 5883904390,52955405230,476599444231,4289397389563,38604583680520,
%U 347441274648040,3126971536402441
%N Gaussian binomial coefficient [ n,2 ] for q=3.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H T. D. Noe, <a href="/A006100/b006100.txt">Table of n, a(n) for n=2..100</a>
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H M. Sved, <a href="/A006095/a006095.pdf">Gaussians and binomials</a>, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (13,-39,27).
%F G.f.: x^2/[(1-x)(1-3x)(1-9x)].
%F a(n) = (9^n - 4*3^n + 3)/48. - _Mitch Harris_, Mar 23 2008
%F a(n) = 4*a(n-1) -3*a(n-2) +9^(n-2), n>=4. - _Vincenzo Librandi_, Mar 20 2011
%p a:=n->sum((9^(n-j)-3^(n-j))/6,j=0..n): seq(a(n), n=1..17); # _Zerinvary Lajos_, Jan 15 2007
%p A006100:=-1/(z-1)/(3*z-1)/(9*z-1); # _Simon Plouffe_ in his 1992 dissertation with offset 0
%t f[k_] := 3^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
%t a[n_] := SymmetricPolynomial[2, t[n]]
%t Table[a[n], {n, 2, 32}] (* A203243 *)
%t Table[a[n]/3, {n, 2, 32}] (* A006100 *)
%o (Sage) [gaussian_binomial(n,2,3) for n in range(2,19)] # _Zerinvary Lajos_, May 25 2009
%Y Cf. A203243.
%K nonn
%O 2,2
%A _N. J. A. Sloane_