login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006100
Gaussian binomial coefficient [ n,2 ] for q=3.
(Formerly M4912)
9
1, 13, 130, 1210, 11011, 99463, 896260, 8069620, 72636421, 653757313, 5883904390, 52955405230, 476599444231, 4289397389563, 38604583680520, 347441274648040, 3126971536402441
OFFSET
2,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
G.f.: x^2/[(1-x)(1-3x)(1-9x)].
a(n) = (9^n - 4*3^n + 3)/48. - Mitch Harris, Mar 23 2008
a(n) = 4*a(n-1) -3*a(n-2) +9^(n-2), n>=4. - Vincenzo Librandi, Mar 20 2011
MAPLE
a:=n->sum((9^(n-j)-3^(n-j))/6, j=0..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 15 2007
A006100:=-1/(z-1)/(3*z-1)/(9*z-1); # Simon Plouffe in his 1992 dissertation with offset 0
MATHEMATICA
f[k_] := 3^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[2, t[n]]
Table[a[n], {n, 2, 32}] (* A203243 *)
Table[a[n]/3, {n, 2, 32}] (* A006100 *)
PROG
(Sage) [gaussian_binomial(n, 2, 3) for n in range(2, 19)] # Zerinvary Lajos, May 25 2009
CROSSREFS
Cf. A203243.
Sequence in context: A023061 A255495 A121033 * A037603 A037708 A142740
KEYWORD
nonn
STATUS
approved