OFFSET
0,4
COMMENTS
Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.
REFERENCES
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Brinkmann, Fast generation of cubic graphs, Journal of Graph Theory, 23(2):139-149, 1996.
Jason Kimberley, Not-necessarily connected regular graphs
Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g
R. W. Robinson, Cubic graphs (notes)
Robinson, R. W.; Wormald, N. C., Numbers of cubic graphs, J. Graph Theory 7 (1983), no. 4, 463-467.
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Eric Weisstein's World of Mathematics, Cubic Graph
Gal Weitz, Lirandë Pira, Chris Ferrie, and Joshua Combes, Sub-universal variational circuits for combinatorial optimization problems, arXiv:2308.14981 [quant-ph], 2023.
CROSSREFS
Cf. A000421.
Row sums of A275744.
3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Ronald C. Read.
Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012
STATUS
approved