login
A005638
Number of unlabeled trivalent (or cubic) graphs with 2n nodes.
(Formerly M1656)
31
1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271
OFFSET
0,4
COMMENTS
Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.
REFERENCES
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Brinkmann, Fast generation of cubic graphs, Journal of Graph Theory, 23(2):139-149, 1996.
R. W. Robinson, Cubic graphs (notes)
Robinson, R. W.; Wormald, N. C., Numbers of cubic graphs, J. Graph Theory 7 (1983), no. 4, 463-467.
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Eric Weisstein's World of Mathematics, Cubic Graph
Gal Weitz, Lirandë Pira, Chris Ferrie, and Joshua Combes, Sub-universal variational circuits for combinatorial optimization problems, arXiv:2308.14981 [quant-ph], 2023.
FORMULA
a(n) = A002851(n) + A165653(n).
This sequence is the Euler transformation of A002851.
CROSSREFS
Cf. A000421.
Row sums of A275744.
3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).
Sequence in context: A214087 A183950 A001928 * A249395 A008988 A061232
KEYWORD
nonn,nice
EXTENSIONS
More terms from Ronald C. Read.
Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012
STATUS
approved