login
A005559
Number of walks on square lattice.
(Formerly M1832)
4
1, 2, 8, 20, 75, 210, 784, 2352, 8820, 27720, 104544, 339768, 1288287, 4294290, 16359200, 55621280, 212751396, 734959368, 2821056160, 9873696560, 38013731756, 134510127752, 519227905728, 1854385377600, 7174705330000, 25828939188000, 100136810390400
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6 (see figure 5).
FORMULA
a(n) = C(n+1,ceiling((n-1)/2)) *C(n,floor((n-1)/2)) -C(n+1,ceiling((n-2)/2)) *C(n,floor((n-2)/2)). - Paul D. Hanna, Apr 16 2004
G.f.: -(48*x^3-16*x^2-3*x+1)*EllipticK(4*x)/(12*Pi*x^4)+(4*x^2-9*x+1)*EllipticE(4*x)/(12*Pi*x^4)+1/(4*x^3)-1/(2*x^2) (using Maple's convention for elliptic integrals: EllipticE(t) = Integral_{s=0..1} sqrt(1 - s^2*t^2)/sqrt(1-s^2) ds, EllipticK(t) = Integral_{s=0..1} ((1-s^2*t^2)*(1-s^2))^(-1/2) ds). - Robert Israel, Oct 19 2014
Conjecture: -(n-1)*(2*n+1)*(n+4)*(n+3)*a(n) +4*(n+1)*(2*n^2+4*n+9)*a(n-1) +16*n*(n-1)*(2*n+3)*(n+1)*a(n-2)=0. - R. J. Mathar, Apr 02 2017
MAPLE
seq(binomial(n+1, ceil((n-1)/2))*binomial(n, floor((n-1)/2)) -binomial(n+1, ceil((n-2)/2))*binomial(n, floor((n-2)/2)), n=1..30); # Robert Israel, Oct 19 2014
MATHEMATICA
Table[Binomial[n+2, Ceiling[n/2]] Binomial[n+1, Floor[n/2]] - Binomial[n+2, Ceiling[(n-1)/2]] Binomial[n+1, Floor[(n-1)/2]], {n, 0, 200}] (* Vincenzo Librandi, Oct 17 2014 *)
PROG
(PARI) {a(n)=binomial(n+2, ceil(n/2))*binomial(n+1, floor(n/2)) - binomial(n+2, ceil((n-1)/2))*binomial(n+1, floor((n-1)/2))}
(Magma) [Binomial(n+2, Ceiling(n/2))*Binomial(n+1, Floor(n/2)) - Binomial(n+2, Ceiling((n-1)/2))*Binomial(n+1, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Oct 16 2014
CROSSREFS
KEYWORD
nonn,walk
STATUS
approved