login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005447
Numerators of the expansion of -W_{-1}(-e^(-1 - x^2/2)) where x > 0 and W_{-1} is the Lambert W function.
(Formerly M5399)
11
1, 1, 1, 1, -1, 1, 1, -139, 1, -571, -281, 163879, -5221, 5246819, 5459, -534703531, 91207079, -4483131259, -2650986803, 432261921612371, -6171801683, 6232523202521089, 4283933145517, -25834629665134204969, 11963983648109
OFFSET
0,8
COMMENTS
Numerators of the expansion of -W_0(-e^(-1 - x^2/2)) where x < 0 an W_0 is the principal branch of the Lambert W function. - Michael Somos, Oct 06 2017
See A299430/A299431 for more formulas; given g.f. A(x) = Sum_{n>=0} A005447(n)/A005446(n)*x^n, then A(x)^2 = Sum_{n>=0} A299430(n)/A299431(n)*x^n.
REFERENCES
E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, 1935, Oxford University Press, p. 221.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. M. Borwein and R. M. Corless, Emerging Tools for Experimental Mathematics, Amer. Math. Monthly, 106 (No. 10, 1999), 889-909.
G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly, 97 (1990), 827-829.
NIST Digital Library of Mathematical Functions, Lambert W-Function, section 4.13.7
J. C. W. Marsaglia, The incomplete gamma function and Ramanujan's rational approximation to exp(x), J. Statist. Comput. Simulation, 24 (1986), 163-168. [N. J. A. Sloane, Jun 23 2011]
FORMULA
G.f.: A(x) = Sum_{n>=0} A005447(n)/A005446(n)*x^n satisfies log(A(x)) = A(x) - 1 - x^2/2.
EXAMPLE
G.f.: A(x) = 1 + x + (1/3)*x^2 + (1/36)*x^3 - (1/270)*x^4 + (1/4320)*x^5 + (1/17010)*x^6 - (139/5443200)*x^7 + (1/204120)*x^8 + ... + (A005447(n)/A005446(n))*x^n + ...
MAPLE
h := proc(k) option remember; local j; `if`(k<=0, 1, (h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
A005447 := n -> `if`(n<4, 1, `if`(n=4, -1, numer(h(n-1))));
seq(A005447(i), i=0..24); # Peter Luschny, Feb 08 2011
# other program
a[1]:=1;
M:=25;
for n from 2 to M do
t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k], k=2..floor(n/2));
if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;
a[n]:=t1;
od:
s1:=[seq(a[n], n=1..M)]; # N. J. A. Sloane, Jun 23 2011, based on J. Marsaglia's 1986 paper
MATHEMATICA
terms = 25; Assuming[x > 0, -ProductLog[-1, -Exp[-1 - x^2/2]] + O[x]^terms] // CoefficientList[#, x]& // Take[#, terms]& // Numerator (* Jean-François Alcover, Jun 20 2013, updated Feb 21 2018 *)
a[ n_] := If[ n < 0, 0, Block[ {$Assumptions = x < 0}, SeriesCoefficient[ -ProductLog[ -Exp[-1 - x^2/2]], {x, 0, n}] // Numerator]]; (* Michael Somos, Oct 06 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<1, n==0, A = vector(n, k, 1); for(k=2, n, A[k] = (A[k-1] - sum(i=2, k-1, i * A[i] * A[k+1-i])) / (k+1)); numerator(A[n]))}; /* Michael Somos, Jun 09 2004 */
(PARI) {a(n) = if( n<1, n==0, numerator( polcoeff( serreverse(sqrt( 2 * (x - log(1 + x + x^2 * O(x^n))))), n)))}; /* Michael Somos, Jun 09 2004 */
(SageMath)
@CachedFunction
def h(n): return 1 if (n<1) else ((n+1)/(n+2))*( h(n-1)/n - sum( h(n-j)*h(j)/(j+1) for j in range(1, n) ))
def A005447(n):
if (n<4): return 1
elif (n==4): return -1
else: return numerator(h(n-1))
[A005447(n) for n in range(31)] # G. C. Greubel, Nov 21 2022
CROSSREFS
Cf. A005446 (denominators), A090804/A065973.
Cf. A299430 / A299431 (A(x)^2), A299432 / A299433.
Sequence in context: A089518 A223192 A199839 * A261703 A266003 A340800
KEYWORD
sign,frac
EXTENSIONS
Edited by Michael Somos, Jul 21 2002
STATUS
approved