OFFSET
0,3
COMMENTS
REFERENCES
E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, 1935, Oxford University Press, p. 221.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
J. M. Borwein and R. M. Corless, Emerging Tools for Experimental Mathematics, Amer. Math. Monthly, 106 (No. 10, 1999), 889-909.
G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly, 97 (1990), 827-829.
J. C. W. Marsaglia, The incomplete gamma function and Ramanujan's rational approximation to exp(x), J. Statist. Comput. Simulation, 24 (1986), 163-168. [N. J. A. Sloane, Jun 23 2011]
FORMULA
a(n) = denominator of ((-1)^n * b(n)), where b(n) = (1/(n+1))*( b(n-1) - Sum_{j=2..n-1} j*b(j)*b(n-j+1) ) with b(0) = b(1) = 1 (from Borwein and Corless). - G. C. Greubel, Nov 21 2022
EXAMPLE
MAPLE
Maple program from N. J. A. Sloane, Jun 23 2011, based on J. Marsaglia's 1986 paper:
a[1]:=1;
M:=25;
for n from 2 to M do
t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k], k=2..floor(n/2));
if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;
a[n]:=t1;
od:
s1:=[seq(a[n], n=1..M)];
MATHEMATICA
terms = 18; Assuming[x > 0, -ProductLog[-1, -Exp[-1 - x^2/2]] + O[x]^terms] // CoefficientList[#, x]& // Take[#, terms]& // Denominator (* Jean-François Alcover, Jun 20 2013, updated Feb 21 2018 *)
PROG
(PARI) a(n)=local(A); if(n<1, n==0, A=vector(n, k, 1); for(k=2, n, A[k]=(A[k-1]-sum(i=2, k-1, i*A[i]*A[k+1-i]))/(k+1)); denominator(A[n])) /* Michael Somos, Jun 09 2004 */
(PARI) a(n)=if(n<1, n==0, denominator(polcoeff(serreverse(sqrt(2*(x-log(1+x+x^2*O(x^n))))), n))) /* Michael Somos, Jun 09 2004 */
(SageMath)
@CachedFunction
def b(n): return 1 if (n<2) else (1/(n+1))*( b(n-1) - sum( j*b(n-j+1)*b(j) for j in range(2, n) ))
def A005446(n): return denominator((-1)^n*b(n))
[A005446(n) for n in range(31)] # G. C. Greubel, Nov 21 2022
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
EXTENSIONS
Edited by Michael Somos, Jul 21 2002
STATUS
approved