login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005446
Denominators of expansion of -W_{-1}(-e^{-1-x^2/2}) where W_{-1} is Lambert W function.
(Formerly M3140)
11
1, 1, 3, 36, 270, 4320, 17010, 5443200, 204120, 2351462400, 1515591000, 2172751257600, 354648294000, 10168475885568000, 7447614174000, 1830325659402240000, 1595278956070800000, 2987091476144455680000
OFFSET
0,3
COMMENTS
See A299430/A299431 for more formulas; given g.f. A(x) = Sum_{n>=0} A005447(n)/A005446(n)*x^n, then A(x)^2 = Sum_{n>=0} A299430(n)/A299431(n)*x^n.
REFERENCES
E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, 1935, Oxford University Press, p. 221.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. M. Borwein and R. M. Corless, Emerging Tools for Experimental Mathematics, Amer. Math. Monthly, 106 (No. 10, 1999), 889-909.
G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly, 97 (1990), 827-829.
J. C. W. Marsaglia, The incomplete gamma function and Ramanujan's rational approximation to exp(x), J. Statist. Comput. Simulation, 24 (1986), 163-168. [N. J. A. Sloane, Jun 23 2011]
FORMULA
G.f.: A(x) = Sum_{n>=0} A005447(n)/A005446(n)*x^n satisfies log(A(x)) = A(x) - 1 - x^2/2.
a(n) = denominator of ((-1)^n * b(n)), where b(n) = (1/(n+1))*( b(n-1) - Sum_{j=2..n-1} j*b(j)*b(n-j+1) ) with b(0) = b(1) = 1 (from Borwein and Corless). - G. C. Greubel, Nov 21 2022
EXAMPLE
1, 1/3, 1/36, -1/270, 1/4320, 1/17010, -139/5443200, 1/204120, -571/2351462400, ...
G.f.: A(x) = 1 + x + 1/3*x^2 + 1/36*x^3 - 1/270*x^4 + 1/4320*x^5 + 1/17010*x^6 - 139/5443200*x^7 + 1/204120*x^8 + ... + A005447(n)/A005446(n)x^n + ...
MAPLE
Maple program from N. J. A. Sloane, Jun 23 2011, based on J. Marsaglia's 1986 paper:
a[1]:=1;
M:=25;
for n from 2 to M do
t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k], k=2..floor(n/2));
if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;
a[n]:=t1;
od:
s1:=[seq(a[n], n=1..M)];
MATHEMATICA
terms = 18; Assuming[x > 0, -ProductLog[-1, -Exp[-1 - x^2/2]] + O[x]^terms] // CoefficientList[#, x]& // Take[#, terms]& // Denominator (* Jean-François Alcover, Jun 20 2013, updated Feb 21 2018 *)
PROG
(PARI) a(n)=local(A); if(n<1, n==0, A=vector(n, k, 1); for(k=2, n, A[k]=(A[k-1]-sum(i=2, k-1, i*A[i]*A[k+1-i]))/(k+1)); denominator(A[n])) /* Michael Somos, Jun 09 2004 */
(PARI) a(n)=if(n<1, n==0, denominator(polcoeff(serreverse(sqrt(2*(x-log(1+x+x^2*O(x^n))))), n))) /* Michael Somos, Jun 09 2004 */
(SageMath)
@CachedFunction
def b(n): return 1 if (n<2) else (1/(n+1))*( b(n-1) - sum( j*b(n-j+1)*b(j) for j in range(2, n) ))
def A005446(n): return denominator((-1)^n*b(n))
[A005446(n) for n in range(31)] # G. C. Greubel, Nov 21 2022
CROSSREFS
Cf. A299430 / A299431 (A(x)^2), A299432 / A299433.
Sequence in context: A073992 A268898 A127960 * A056307 A056299 A212616
KEYWORD
nonn,frac
EXTENSIONS
Edited by Michael Somos, Jul 21 2002
STATUS
approved