login
A005309
Fermionic string states.
(Formerly M1125)
3
1, 0, 2, 4, 8, 16, 32, 60, 114, 212, 384, 692, 1232, 2160, 3760, 6480, 11056, 18728, 31474, 52492, 86976, 143176, 234224, 380988, 616288, 991624, 1587600, 2529560, 4011808, 6334656, 9960080, 15596532, 24327122, 37801568, 58525152, 90291232, 138825416
OFFSET
0,3
COMMENTS
See the reference for precise definition.
The g.f. -(1-2*z+2*z**2)/(-1+2*z) conjectured by Simon Plouffe in his 1992 dissertation is not correct.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. Curtright, Counting symmetry patterns in the spectra of strings, in H. J. de Vega and N. Sánchez, editors, String Theory, Quantum Cosmology and Quantum Gravity. Integrable and Conformal Invariant Theories. World Scientific, Singapore, 1987, pp. 304-333, eq. (3.39) and Table 3.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f. Product_{k>=1} ((1+x^k)/(1-x^k))^(k-1). - Vaclav Kotesovec, Aug 19 2015
Convolution of A052847 and A052812. - Vaclav Kotesovec, Aug 19 2015
a(n) ~ 2^(7/18) * (7*Zeta(3))^(1/36) * exp(1/12 - Pi^4/(336*Zeta(3)) - Pi^2 * n^(1/3) / (2^(5/3)*(7*Zeta(3))^(1/3)) + 3/2 * (7*Zeta(3)/2)^(1/3) * n^(2/3)) / (A * sqrt(3) * n^(19/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 19 2015
CROSSREFS
KEYWORD
nonn
STATUS
approved