login
A005004
Davenport-Schinzel numbers of degree n on 3 symbols.
(Formerly M2431)
3
1, 3, 5, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34, 38, 40, 44, 46, 50, 52, 56, 58, 62, 64, 68, 70, 74, 76, 80, 82, 86, 88, 92, 94, 98, 100, 104, 106, 110, 112, 116, 118, 122, 124, 128, 130, 134, 136, 140, 142, 146, 148, 152, 154, 158, 160, 164, 166
OFFSET
1,2
REFERENCES
Annette J. Dobson and Shiela Oates Macdonald, "Lower bounds for the lengths of Davenport-Schinzel sequences", Utilitas Mathematica 6 (1974): 251-257.
R. K. Guy, Unsolved Problems in Number Theory, E20.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. G. Stanton and P. H. Dirksen, Davenport-Schinzel sequences, Ars. Combin., 1 (1976), 43-51.
LINKS
Boris Aronov and Dmitriy Drusvyatskiy, Complexity of a Single Face in an Arrangement of s-Intersecting Curves, arXiv:1108.4336v1 [cs.CG], 2011.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
R. G. Stanton and P. H. Dirksen, Davenport-Schinzel sequences, Ars. Combin., 1 (1976), 43-51. [Annotated scanned copy]
R. G. Stanton and P. H. Dirksen, Davenport-Schinzel sequences, Ars. Combin., 1 (1976), 43-51. [Annotated scanned copy, different annotations from one above]
FORMULA
For n > 3, a(2*n) = 6 * n - 4 and a(2*n+1) = 6 * n - 5. - Sean A. Irvine, Feb 19 2016
MAPLE
A005004:=(z**3-z**2+z+1)*(z**2+z+1)/(1+z)/(z-1)**2; # Conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Join[{1, 3, 5}, LinearRecurrence[{1, 1, -1}, {8, 10, 14}, 60]] (* Jean-François Alcover, Sep 04 2018 *)
CROSSREFS
Cf. A002004.
A row of the array in A259874.
Sequence in context: A051611 A258028 A345427 * A006218 A062839 A372866
KEYWORD
nonn
EXTENSIONS
Improved title and more terms from Sean A. Irvine, Feb 19 2016
STATUS
approved