login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n*phi^9), where phi is the golden ratio, A001622.
20

%I #21 Aug 25 2023 08:50:09

%S 0,76,152,228,304,380,456,532,608,684,760,836,912,988,1064,1140,1216,

%T 1292,1368,1444,1520,1596,1672,1748,1824,1900,1976,2052,2128,2204,

%U 2280,2356,2432,2508,2584,2660,2736

%N a(n) = floor(n*phi^9), where phi is the golden ratio, A001622.

%C The first differences a(n) - a(n-1) generally equal 76 with exceptions for example at n = 77, 153, 229, 305, 381, 457, ..., 5777, 5854, 5930, .... where they equal 77. - _R. J. Mathar_, Jan 11 2008

%H G. C. Greubel, <a href="/A004924/b004924.txt">Table of n, a(n) for n = 0..10000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/NonRecursions.html">Non Recursions</a>

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>

%t Floor[GoldenRatio^9*Range[0, 60]] (* _G. C. Greubel_, Aug 24 2023 *)

%o (Magma) [Floor((38+17*Sqrt(5))*n): n in [0..60]]; // _G. C. Greubel_, Aug 24 2023

%o (SageMath) [floor(golden_ratio^9*n) for n in range(61)] # _G. C. Greubel_, Aug 24 2023

%Y Cf. A004919, A004920, A004921, A004922, A004923, A004925, A004926.

%Y Cf. A004927, A004928, A004929, A004930, A004931, A004932, A004933.

%Y Cf. A004934, A004935, A004976, A066096, A090909.

%Y Cf. A001622

%K nonn

%O 0,2

%A _N. J. A. Sloane_