login
A004732
Numerator of n!!/(n+3)!!.
2
1, 1, 2, 1, 8, 5, 16, 7, 128, 21, 256, 33, 1024, 429, 2048, 715, 32768, 2431, 65536, 4199, 262144, 29393, 524288, 52003, 4194304, 185725, 8388608, 334305, 33554432, 9694845, 67108864, 17678835, 2147483648
OFFSET
0,3
REFERENCES
S. Janson, On the traveling fly problem, Graph Theory Notes of New York, Vol. XXXI, 17, 1996.
FORMULA
From Robert Israel, Jan 07 2019: (Start)
a(2*m) = 2^(2*m+1 - A048881(m) - A007814(m+1)).
a(2*m+1) = A000265(A000108(m+1)). (End)
MAPLE
f:= proc(n) local m, r;
m:= floor(n/2);
if n::even then 2^(2*m - padic:-ordp(binomial(2*m+1, m), 2) - padic:-ordp(m+1, 2))
else
r:= binomial(2*m+2, m+1)/(m+2);
r/2^padic:-ordp(r, 2);
fi
end proc:
map(f, [$0..50]); # Robert Israel, Jan 07 2019
MATHEMATICA
Numerator[Table[n!!/(n+3)!!, {n, 0, 40}]] (* Harvey P. Dale, Nov 26 2015 *)
PROG
(PARI) a(n) = numerator(prod(i=0, floor((n-1)/2), n-2*i)/prod(i=0, floor((n+2)/2), n+3-2*i)) \\ Michel Marcus, May 24 2013
CROSSREFS
KEYWORD
nonn,frac
STATUS
approved