login
A004411
Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-10).
2
1, -20, 220, -1760, 11420, -63624, 315040, -1418560, 5903260, -22976820, 84413912, -294841120, 984745120, -3159938760, 9780562880, -29296914112, 85169213340, -240882506920, 664216884540, -1788966694240, 4714033526616, -12170584419840, 30826269009760
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)), set m = 10 for this sequence. - Vaclav Kotesovec, Aug 18 2015
From Ilya Gutkovskiy, Sep 20 2018: (Start)
G.f.: 1/theta_3(x)^10, where theta_3() is the Jacobi theta function.
G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^10. (End)
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^10, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
PROG
(PARI) q='q+O('q^99); Vec(((eta(q)*eta(q^4))^2/eta(q^2)^5)^10) \\ Altug Alkan, Sep 20 2018
CROSSREFS
Sequence in context: A213351 A140236 A341371 * A140354 A155673 A000833
KEYWORD
sign
STATUS
approved