OFFSET
0,2
COMMENTS
Also number of non-attacking bishops on n X n board. - Koksal Karakus (karakusk(AT)hotmail.com), May 27 2002
Engel expansion of e^(1/2) (see A006784 for definition) [when offset by 1]. - Henry Bottomley, Dec 18 2000
Numbers n such that a 2n-group (i.e., a group of order 2n) has subgroup C_2. - Lekraj Beedassy, Oct 14 2004
Image of 1/(1-2x) under the mapping g(x)->g(x/(1+x^2)). - Paul Barry, Jan 16 2005
Incrementally largest terms in the continued fraction for e. - Nick Hobson, Jan 11 2007
Conjecturally, the differences of two consecutive primes (without repetition). - Juri-Stepan Gerasimov, Nov 09 2009
Equals (1, 2, 2, 2, ...) convolved with (1, 0, 2, 0, 2, 0, 2, ...). - Gary W. Adamson, Mar 03 2010
a(n) is the number of 0-dimensional elements (vertices) in an n-cross polytope. - Patrick J. McNab, Jul 06 2015
Numbers k such that in the symmetric representation of sigma(k) there is no pair bars as its ends (Cf. A237593). - Omar E. Pol, Sep 28 2018
Also, the coordination sequence of the L-lattice (see A332419). - Sean A. Irvine, Jul 29 2020
LINKS
E. Friedman, Math. Magic
Eric Weisstein's World of Mathematics, Cross Polytope
Index entries for linear recurrences with constant coefficients, signature (2, -1).
FORMULA
G.f.: (1+x^2)/(1-x)^2. - Paul Barry, Feb 28 2003
Inverse binomial transform of Cullen numbers A002064. a(n)=2n+0^n. - Paul Barry, Jun 12 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1)*(-1)^k*2^(n-2k). - Paul Barry, Jan 16 2005
Equals binomial transform of [1, 1, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Jul 15 2008
E.g.f.: 1+x*sinh(x) (aerated sequence). - Paul Barry, Oct 11 2009
MATHEMATICA
Join[{1}, Table[2*n, {n, 200}]] (* Vladimir Joseph Stephan Orlovsky, Jul 10 2011 *)
Select[Range@ 105, PowerMod[#, #, # + 1] == 1 &] (* Robert G. Wilson v, Sep 26 2016 *)
PROG
(Haskell)
a004277 n = 2 * n - 1 + signum (1 - n)
a004277_list = 1 : [2, 4 ..] -- Reinhard Zumkeller, Dec 19 2013
(Magma) [1] cat [2*n: n in [1..80]]; // Vincenzo Librandi, Jul 11 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Corrected by Charles R Greathouse IV, Mar 18 2010
STATUS
approved