login
A004172
Triangle of coefficients of Euler polynomials E_2n(x) (exponents in increasing order).
5
1, 0, -1, 1, 0, 1, 0, -2, 1, 0, -3, 0, 5, 0, -3, 1, 0, 17, 0, -28, 0, 14, 0, -4, 1, 0, -155, 0, 255, 0, -126, 0, 30, 0, -5, 1, 0, 2073, 0, -3410, 0, 1683, 0, -396, 0, 55, 0, -6, 1, 0, -38227, 0, 62881, 0, -31031, 0, 7293, 0, -1001, 0, 91, 0, -7, 1, 0, 929569, 0
OFFSET
0,8
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Eric Weisstein's World of Mathematics, Euler Polynomial.
MATHEMATICA
Flatten[Table[CoefficientList[EulerE[2n, x], x], {n, 0, 8}]] (* Jean-François Alcover, Jul 21 2011 *)
CROSSREFS
Cf. A060083.
Sequence in context: A131047 A366548 A143714 * A082754 A063173 A120111
KEYWORD
sign,tabl,nice
STATUS
approved