login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003732
Number of Hamiltonian paths in C_5 X P_n.
4
5, 130, 1660, 16820, 152230, 1275680, 10154290, 77897010, 581452680, 4250594690, 30572999140, 217099260110, 1525905283670, 10636695448300, 73649615037480, 507171127397480, 3476871213780220, 23747634842538120
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
FORMULA
Faase gives a 12-term linear recurrence on his web page:
a(1) = 5,
a(2) = 130,
a(3) = 1660,
a(4) = 16820,
a(5) = 152230,
a(6) = 1275680,
a(7) = 10154290,
a(8) = 77897010,
a(9) = 581452680,
a(10) = 4250594690,
a(11) = 30572999140,
a(12) = 217099260110,
a(13) = 1525905283670,
a(14) = 10636695448300 and
a(n) = 19a(n-1) - 127a(n-2) + 328a(n-3) - 117a(n-4) - 675a(n-5)
+ 1127a(n-6) - 1016a(n-7) + 380a(n-8) + 12a(n-9) - 140a(n-10)
+ 68a(n-11) - 20a(n-12), n>14.
G.f. 5*x+130*x^2 -10*x^3*(-166 +1472*x -4347*x^2 +2503*x^3 +7316*x^4 -13386*x^5 +12513*x^6 -4715*x^7 -215*x^8 +1824*x^9 -856*x^10 +252*x^11) / ( (1-7*x-x^2+20*x^3-3*x^4+3*x^5+5*x^6) *(-1+6*x-4*x^2+2*x^3)^2 ). - R. J. Mathar, Aug 21 2012
CROSSREFS
Sequence in context: A281818 A332317 A069078 * A203476 A203702 A142892
KEYWORD
nonn
EXTENSIONS
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
STATUS
approved