login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003731
Number of Hamiltonian cycles in C_5 X P_n.
5
1, 5, 30, 160, 850, 4520, 24040, 127860, 680040, 3616880, 19236840, 102313600, 544168000, 2894227280, 15393318880, 81871340160, 435443220000, 2315960597120, 12317733383040, 65513444349760, 348441653760640, 1853231611930880, 9856649945242240, 52423856531251200
OFFSET
1,2
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
FORMULA
a(n) = 6a(n-1) - 4a(n-2) + 2a(n-3), n>3.
G.f.: x*(1-x+4*x^2-2*x^3)/(1-6*x+4*x^2-2*x^3). - Colin Barker, Sep 01 2012
MATHEMATICA
CoefficientList[Series[(1 - x + 4 x^2 - 2 x^3)/(1 - 6 x + 4 x^2 - 2 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2013 *)
PROG
(Magma) I:=[1, 5, 30, 160]; [n le 4 select I[n] else 6*Self(n-1)-4*Self(n-2)+2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 14 2013
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 2, -4, 6]^(n-1)*[1; 5; 30])[1, 1] \\ Charles R Greathouse IV, Jun 23 2020
CROSSREFS
Sequence in context: A110155 A122995 A254944 * A343362 A055838 A318591
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Oct 14 2013
STATUS
approved