login
A003510
An equivalence relation on permutations.
(Formerly M1510)
2
1, 1, 2, 5, 17, 67, 352, 1969, 13295, 97619, 848354, 7647499, 82862683, 897904165, 11226063188, 146116260203, 2089038231953, 30230018309161, 508450431515290, 8318618236423861, 154636109939564681, 2896102013935844771, 59056861862689101272
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.18.
LINKS
Richard Stanley and Albert Nijenhuis, Problem 5932, Amer. Math. Monthly, 82 (1975), 86-87.
FORMULA
E.g.f.: exp ( Sum_{j>=1} x^j / j*phi(j) ), where phi = Euler phi function (A000010).
MAPLE
with(numtheory); exp(add(x^n/(n*phi(n)), n=1..31));
MATHEMATICA
max = 22; f[x_] := Exp[ Sum[ x^k/(k*EulerPhi[k]), {k, 1, max}]]; CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 12 2011 *)
CROSSREFS
Cf. A000010.
Sequence in context: A104082 A166474 A054769 * A051625 A056098 A239201
KEYWORD
nonn,easy,nice
STATUS
approved