login
A003340
Numbers that are the sum of 6 positive 4th powers.
39
6, 21, 36, 51, 66, 81, 86, 96, 101, 116, 131, 146, 161, 166, 181, 196, 211, 226, 246, 261, 276, 291, 306, 321, 326, 336, 341, 356, 371, 386, 401, 406, 421, 436, 451, 466, 486, 501, 516, 531, 546, 561, 576, 581, 596, 611, 626, 630, 641, 645, 660, 661, 675, 676, 690
OFFSET
1,1
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Eric Weisstein's World of Mathematics, Biquadratic Number.
EXAMPLE
From David A. Corneth, Aug 04 2020: (Start)
13090 is in the sequence as 13090 = 4^4 + 4^4 + 5^4 + 6^4 + 8^4 + 9^4.
17539 is in the sequence as 17539 = 2^4 + 3^4 + 4^4 + 5^4 + 9^4 + 10^4.
23732 is in the sequence as 23732 = 3^4 + 5^4 + 5^4 + 7^4 + 10^4 + 10^4. (End)
MATHEMATICA
Select[Range[1000], AnyTrue[PowersRepresentations[#, 6, 4], First[#]>0&]&] (* Jean-François Alcover, Jul 18 2017 *)
PROG
(Python)
from itertools import combinations_with_replacement as combs_with_rep
def aupto(limit):
qd = [k**4 for k in range(1, int(limit**.25)+2) if k**4 + 5 <= limit]
ss = set(sum(c) for c in combs_with_rep(qd, 6))
return sorted(s for s in ss if s <= limit)
print(aupto(700)) # Michael S. Branicky, Jun 21 2021
KEYWORD
nonn,easy
STATUS
approved