login
A003293
Number of planar partitions of n decreasing across rows.
(Formerly M1058)
32
1, 1, 2, 4, 7, 12, 21, 34, 56, 90, 143, 223, 348, 532, 811, 1224, 1834, 2725, 4031, 5914, 8638, 12540, 18116, 26035, 37262, 53070, 75292, 106377, 149738, 209980, 293473, 408734, 567484, 785409, 1083817, 1491247, 2046233, 2800125, 3821959, 5203515
OFFSET
0,3
COMMENTS
Also number of planar partitions monotonically decreasing down antidiagonals (i.e., with b(n,k) <= b(n-1,k+1)). Transpose (to get planar partitions decreasing down columns), then take the conjugate of each row. - Franklin T. Adams-Watters, May 15 2006
Also number of partitions into one kind of 1's and 2's, two kinds of 3's and 4's, three kinds of 5's and 6's, etc. - Joerg Arndt, May 01 2013
Also count of semistandard Young tableaux with sum of entries equal to n (row sums of A228125). - Wouter Meeussen, Aug 11 2013
REFERENCES
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 133.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from Nathaniel Johnston)
M. S. Cheema and W. E. Conway, Numerical investigation of certain asymptotic results in the theory of partitions, Math. Comp., 26 (1972), 999-1005.
Wenjie Fang, Hsien-Kuei Hwang, and Mihyun Kang, Phase transitions from exp(n^(1/2)) to exp(n^(2/3)) in the asymptotics of banded plane partitions, arXiv:2004.08901 [math.CO], 2020.
B. Gordon and L. Houten, Notes on Plane Partitions I, J. of Comb. Theory, 4 (1968), 72-80.
B. Gordon and L. Houten, Notes on Plane Partitions II, J. of Comb. Theory, 4 (1968), 81-99.
Basil Gordon and Lorne Houten, Notes on plane partitions III (first page is available), Duke Math. J. Volume 36, Number 4 (1969), 801-824.
B. Gordon and L. Houten, Notes on Plane Partitions V, Journal of Combinatorial Theory, vol. 11, issue 2, 1971, pp. 157-168.
B. Gordon and L. Houten, Notes on Plane Partitions VI, Discrete Mathematics, vol. 26, issue 1, 1979, pp. 41-45.
Richard P. Stanley, Theory and Applications of Plane Partitions: Part 2, Studies in Appl. Math., 1 (1971), 259-279.
Richard P. Stanley, Theory and Application of Plane Partitions. Part 2, Studies in Appl. Math., 1 (1971), 259-279.
FORMULA
G.f.: Product_(1 - x^k)^{-c(k)}, c(k) = 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ....
Euler transform of A110654. - Michael Somos, Sep 19 2006
a(n) ~ 2^(-3/4) * (3*Pi*Zeta(3))^(-1/2) * (n/Zeta(3))^(-49/72) * exp(3/2*Zeta(3) * (n/Zeta(3))^(2/3) + Pi^2*(n/Zeta(3))^(1/3)/24 - Pi^4/(3456*Zeta(3)) + Zeta'(-1)/2) [Basil Gordon and Lorne Houten, 1969]. - Vaclav Kotesovec, Feb 28 2015
EXAMPLE
From Gus Wiseman, Jan 17 2019: (Start)
The a(6) = 21 plane partitions with strictly decreasing columns (the count is the same as for strictly decreasing rows):
6 51 42 411 33 321 3111 222 2211 21111 111111
.
5 4 41 31 32 311 22 221 2111
1 2 1 2 1 1 11 1 1
.
3
2
1
(End)
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> `if`(modp(n, 2)=0, n, n+1)/2): seq(a(n), n=0..45); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
CoefficientList[Series[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, 40}], {x, 0, 40}], x][[1 ;; 40]] (* Jean-François Alcover, Apr 18 2011, after Michael Somos *)
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^((2*k+1-(-1)^k)/4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 28 2015 *)
nmax = 50; CoefficientList[Series[Product[1/((1-x^(2*k-1))*(1-x^(2*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 02 2015 *)
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n))} /* Michael Somos, Sep 19 2006 */
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, Feb 06 2000
Additional comments from Michael Somos, May 19 2000
STATUS
approved