login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n*(sqrt(5)+5)/2).
(Formerly M2618)
23

%I M2618 #67 Nov 14 2023 09:22:39

%S 3,7,10,14,18,21,25,28,32,36,39,43,47,50,54,57,61,65,68,72,75,79,83,

%T 86,90,94,97,101,104,108,112,115,119,123,126,130,133,137,141,144,148,

%U 151,155,159,162,166,170,173,177,180,184,188,191,195,198,202,206,209

%N a(n) = floor(n*(sqrt(5)+5)/2).

%C Let r = (5 - sqrt(5))/2 and s = (5 + sqrt(5))/2. Then 1/r + 1/s = 1, so that A249115 and A003231 are a pair of complementary Beatty sequences. Let tau = (1 + sqrt(5))/2, the golden ratio. Let R = {h*tau, h >= 1} and S = {k*(tau - 1), k >= 1}. Then A003231(n) is the position of n*tau in the ordered union of R and S. The position of n*(tau - 1) is A249115(n). - _Clark Kimberling_, Oct 21 2014

%C This is the function named c in the Carlitz-Scoville-Vaughan link. - _Eric M. Schmidt_, Aug 06 2015

%C Natural numbers whose representation in base phi differs between the Bergmann representation and the "canonical" representation described by Dekking and van Loon. See proposition 3.3 in Dekking, van Loon (2021). - _Hugo Pfoertner_, May 26 2023

%D Dekking, Michel, and Ad van Loon. "On the representation of the natural numbers by powers of the golden mean." arXiv preprint arXiv:2111.07544 (2021); Fib. Quart. 61:2 (May 2023), 105-118.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H L. Carlitz, R. Scoville and T. Vaughan, <a href="http://www.fq.math.ca/Scanned/11-4/carlitz.pdf">Some arithmetic functions related to Fibonacci numbers</a>, Fib. Quart., 11 (1973), 337-386.

%H Michel Dekking and Ad van Loon, <a href="https://doi.org/10.48550/arXiv.2111.07544">On the representation of the natural numbers by powers of the golden mean</a>, arXiv:2111.07544 [math.NT], 15 Nov 2021.

%H Scott V. Tezlaf, <a href="https://arxiv.org/abs/1806.00331">On ordinal dynamics and the multiplicity of transfinite cardinality</a>, arXiv:1806.00331 [math.NT], 2018. See p. 9.

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>

%F a(n) = 2*n + A000201(n). - _R. J. Mathar_, Aug 22 2014

%p A003231:=n->floor(n*(sqrt(5)+5)/2): seq(A003231(n), n=1..100); # _Wesley Ivan Hurt_, Aug 06 2015

%t With[{c=(Sqrt[5]+5)/2}, Floor[c*Range[60]]] (* _Harvey P. Dale_, Oct 01 2012 *)

%o (PARI) a(n)=floor(n*(sqrt(5)+5)/2)

%o (PARI) a(n)=(5*n+sqrtint(5*n^2))\2; \\ _Michel Marcus_, Nov 14 2023

%o (Haskell)

%o a003231 = floor . (/ 2) . (* (sqrt 5 + 5)) . fromIntegral

%o -- _Reinhard Zumkeller_, Oct 03 2014

%o (Magma) [Floor(n*(Sqrt(5)+5)/2): n in [1..100]]; // _Vincenzo Librandi_, Oct 23 2014

%o (Python)

%o from math import isqrt

%o def A003231(n): return (n+isqrt(5*n**2)>>1)+(n<<1) # _Chai Wah Wu_, Aug 25 2022

%Y Cf. A000201, A003231, A003233, A003234, A249115.

%Y Cf. A105424, A362917.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_

%E Better description and more terms from _Michael Somos_, Jun 07 2000