login
A003107
Number of partitions of n into Fibonacci parts (with a single type of 1).
(Formerly M0556)
33
1, 1, 2, 3, 4, 6, 8, 10, 14, 17, 22, 27, 33, 41, 49, 59, 71, 83, 99, 115, 134, 157, 180, 208, 239, 272, 312, 353, 400, 453, 509, 573, 642, 717, 803, 892, 993, 1102, 1219, 1350, 1489, 1640, 1808, 1983, 2178, 2386, 2609, 2854, 3113, 3393, 3697, 4017, 4367, 4737
OFFSET
0,3
COMMENTS
The partitions allow repeated items but the order of items is immaterial (1+2=2+1). - Ron Knott, Oct 22 2003
A098641(n) = a(A000045(n)). - Reinhard Zumkeller, Apr 24 2005
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 (first 1000 terms from T. D. Noe)
G. Almkvist, Partitions with Parts in a Finite Set and with Parts Outside a Finite Set, Exper. Math. vol 11 no 4 (2002) p 449-456.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
FORMULA
a(n) = (1/n)*Sum_{k=1..n} A005092(k)*a(n-k), n > 1, a(0)=1. - Vladeta Jovovic, Jan 21 2002
G.f.: Product_{i>=2} 1/(1-x^fibonacci(i)). - Ron Knott, Oct 22 2003
a(n) = f(n,1,1) with f(x,y,z) = if x<y then 0^x else f(x-y,y,z)+f(x,y+z,y). - Reinhard Zumkeller, Nov 11 2009
G.f.: 1 + Sum_{i>=2} x^Fibonacci(i) / Product_{j=2..i} (1 - x^Fibonacci(j)). - Ilya Gutkovskiy, May 07 2017
EXAMPLE
a(4) = 4 since the 4 partitions of 4 using only Fibonacci numbers, repetitions allowed, are 1+1+1+1, 2+2, 2+1+1, 3+1.
MAPLE
F:= combinat[fibonacci]:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
b(n, i-1)+`if`(F(i)>n, 0, b(n-F(i), i))))
end:
a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1)
while F(j+1)<=n do od; b(n, j)
end:
seq(a(n), n=0..100); # Alois P. Heinz, Jul 11 2013
MATHEMATICA
CoefficientList[ Series[1/ Product[1 - x^Fibonacci[i], {i, 2, 21}], {x, 0, 53}], x] (* Robert G. Wilson v, Mar 28 2006 *)
nmax = 53;
s = Table[Fibonacci[n], {n, nmax}];
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
F = Fibonacci;
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 2, 0,
b[n, i - 1] + If[F[i] > n, 0, b[n - F[i], i]]]];
a[n_] := Module[{j}, For[j = Floor@Log[(1+Sqrt[5])/2, n+1],
F[j + 1] <= n, j++]; b[n, j]];
a /@ Range[0, 100] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
PROG
(Haskell)
import Data.MemoCombinators (memo2, integral)
a003107 n = a003107_list !! n
a003107_list = map (p' 2) [0..] where
p' = memo2 integral integral p
p _ 0 = 1
p k m | m < fib = 0
| otherwise = p' k (m - fib) + p' (k + 1) m where fib = a000045 k
-- Reinhard Zumkeller, Dec 09 2015
(PARI) f(x, y, z)=if(x<y, 0^x, f(x-y, y, z)+f(x, y+z, y))
a(n) = f(n, 1, 1) \\ Charles R Greathouse IV, Dec 14 2015
CROSSREFS
Cf. A007000, A005092, A028290 (where the only Fibonacci numbers allowed are 1, 2, 3, 5 and 8).
Row sums of A319394.
Sequence in context: A243225 A220851 A028290 * A217123 A014977 A008583
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vladeta Jovovic, Jan 21 2002
STATUS
approved