login
A002840
Number of polyhedral graphs with n edges.
(Formerly M0339 N0129)
17
1, 0, 1, 2, 2, 4, 12, 22, 58, 158, 448, 1342, 4199, 13384, 43708, 144810, 485704, 1645576, 5623571, 19358410, 67078828, 233800162, 819267086, 2884908430, 10204782956, 36249143676, 129267865144, 462669746182, 1661652306539, 5986979643542
OFFSET
6,4
REFERENCES
M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. R. S. Walsh, personal communication.
LINKS
C. J. Bouwkamp & N. J. A. Sloane, Correspondence, 1971
A. J. W. Duijvestijn and P. J. Federico, The number of polyhedral (3-connected planar) graphs, Math. Comp. 37 (1981), no. 156, 523-532.
P. J. Federico, Enumeration of polyhedra: the number of 9-hedra, J. Combin. Theory, 7 (1969), 155-161.
Hugo Pfoertner, Unlabeled 3-connected planar graphs for n<=20 edges, list in PARI-readable format.
Eric Weisstein's World of Mathematics, Polyhedral Graph
PROG
(PARI) \\ It is assumed that the 3cp.gp file (from the linked zip archive) has been read before, i.e., \r [path]3cp.gp
for(k=6, #ThreeConnectedData, print1(#ThreeConnectedData[k], ", "));
\\ printing of the edge lists of the graphs for n <= 11
print(ThreeConnectedData[6..11]) \\ Hugo Pfoertner, Feb 14 2021
CROSSREFS
Column sums of A049337.
Sequence in context: A112362 A134720 A019225 * A355566 A298477 A253677
KEYWORD
nonn,nice
EXTENSIONS
a(30)-a(35) from the Numericana link added by Andrey Zabolotskiy, Jun 13 2020
STATUS
approved