login
A002774
Number of bipartite partitions of n white objects and n black ones.
(Formerly M1925 N0760)
20
1, 2, 9, 31, 109, 339, 1043, 2998, 8406, 22652, 59521, 151958, 379693, 927622, 2224235, 5236586, 12130780, 27669593, 62229990, 138095696, 302673029, 655627975, 1404599867, 2977831389, 6251060785, 12999299705, 26791990052, 54750235190, 110977389012
OFFSET
0,2
COMMENTS
Number of ways to factor p^n * q^n where p and q are distinct primes.
REFERENCES
M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, see p(n,n), page 778. - N. J. A. Sloane, Dec 30 2018
A. Murthy, Generalization of partition function, introducing Smarandache factor partitions. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
A. Murthy, Program for finding out the number of Smarandache factor partitions. (To be published in Smarandache Notions Journal).
Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4, 1.14.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..400 (terms 0..100 from Alois P. Heinz)
F. C. Auluck, On partitions of bipartite numbers, Proc. Cambridge Philos. Soc. 49, (1953). 72-83.
F. C. Auluck, On partitions of bipartite numbers, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 49, Issue 01, January 1953, pp. 72-83. (full article)
Katherine Ormeño Bastías, Paul Martin, and Steen Ryom-Hansen, On the spherical partition algebra, arXiv:2402.01890 [math.RT], 2024.
FORMULA
a(n) = A054225(2n, n) = A091437(2n).
a(n) ~ Zeta(3)^(19/36) * exp(3*Zeta(3)^(1/3) * n^(2/3) + Pi^2 * n^(1/3) / (6*Zeta(3)^(1/3)) + Zeta'(-1) - Pi^4/(432*Zeta(3))) / (sqrt(3) * (2*Pi)^(3/2) * n^(55/36)). - Vaclav Kotesovec, Jan 30 2016
Formula (25) in the article by Auluck is incorrect. The correct formula is: p(n,n) ~ c^(19/12) * exp(3*c*n^(2/3) + 3*d*n^(1/3) + Zeta'(-1) - 3*d^2/(4*c)) / (sqrt(3) * (2*Pi)^(3/2) * n^(55/36)), where c = Zeta(3)^(1/3), d = Zeta(2)/(3*c). Also formula (24) is incorrect. - Vaclav Kotesovec, Jan 30 2016
From Vaclav Kotesovec, Feb 04 2016: (Start)
The correct formula (24) is p(m,n) ~ c^(7/4)/(2*Pi*sqrt(3)) * exp(3*c*(m*n)^(1/3) + 3*d*(m+n)/(2*(m*n)^(1/3)) - 19*log(m*n)/24 - ((m/n - 2*n/m)*log(m) + (n/m - 2*m/n)*log(n))/36 - (m/n + n/m)*(log(c)/12 + Zeta'(-1) - 1/12 + 3*d^2/(4*c)) + 3*d^2/(4*c) - 3*log(2*Pi)/4 + fi((n/m)^(1/2))),
where m and n are of the same order, c = Zeta(3)^(1/3), d = Zeta(2)/(3*c) and fi(alfa) = Integral_{t=0..infinity} (1/t)*(1/(exp(alfa*t)-1)/(exp(t/alfa)-1) - (alfa/t)/(exp(alfa*t)-1) - ((1/alfa)/t)/(exp(t/alfa)-1) + 1/t^2 + (1/4)/(exp(alfa*t)-1) + (1/4)/(exp(t/alfa)-1) - (alfa/4)/t - ((1/4)/alfa)/t).
If m = n then alfa = 1 and fi(1) = 3*Zeta'(-1) + log(2*Pi)/4 - 1/6.
For the asymptotic formula for fixed m see A054225.
(End)
MAPLE
with(numtheory):
b:= proc(n, k) option remember; `if`(n>k, 0, 1) +`if`(isprime(n), 0,
add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
end:
a:= n-> b(6^n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Jun 27 2013
MATHEMATICA
max = 26; se = Series[ Sum[ Log[1 - x^(n-k)*y^k], {n, 1, 2max}, {k, 0, n}], {x, 0, 2max}, {y, 0, 2max}]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max}, {y, 0, 2max}], {x, y}]; a[n_] := coes[[n+1, n+1]]; Table[a[n], {n, 0, max} ](* Jean-François Alcover, Dec 06 2011 *)
CROSSREFS
Cf. A005380.
Cf. A219554. Column k=2 of A219727. - Alois P. Heinz, Nov 26 2012
Main diagonal of A054225 if that entry is drawn as a square array. - N. J. A. Sloane, Dec 30 2018
Sequence in context: A277244 A277245 A277246 * A318124 A295264 A150905
KEYWORD
nonn
EXTENSIONS
Corrected using A000491.
Edited by Christian G. Bower, Jan 08 2004
STATUS
approved