OFFSET
1,2
COMMENTS
For same problem, but with queens in general position (without condition "non-attacking"), see A002564. - Vaclav Kotesovec, Sep 07 2012
REFERENCES
W. Ahrens, Mathematische Unterhaltungen und Spiele, second edition (1910), Vol. 1, p. 301.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Mia Müßig, Julia code to compute the sequence
M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49.
M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49. [Incomplete annotated scan of title page and pages 18-51]
EXAMPLE
a(5) = 16 because it is impossible to attack all squares with 2 queens but with 3 queens you can do it in 16 different ways (with mirroring and rotation).
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
EXTENSIONS
a(9)-a(12) from Johan Särnbratt, Mar 28 2008
Name of the sequence corrected by Vaclav Kotesovec, Sep 07 2012
a(13)-a(15) from Andrew Howroyd, Dec 07 2021
a(16)-a(30) from Mia Muessig, Oct 04 2024
STATUS
approved