login
A002447
Expansion of 1/(1-2*x^2-3*x^3).
2
1, 0, 2, 3, 4, 12, 17, 36, 70, 123, 248, 456, 865, 1656, 3098, 5907, 11164, 21108, 40049, 75708, 143422, 271563, 513968, 973392, 1842625, 3488688, 6605426, 12505251, 23676916, 44826780, 84869585, 160684308
OFFSET
0,3
FORMULA
From Paul Barry, Oct 16 2004: (Start)
a(n) = 2*a(n-2) + 3*a(n-3).
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2*k)*2^k*(3/2)^(n-2*k). (End)
MATHEMATICA
CoefficientList[Series[1/(1-2*x^2-3*x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 11 2012 *)
LinearRecurrence[{0, 2, 3}, {1, 0, 2}, 40] (* G. C. Greubel, Jul 04 2019 *)
PROG
(Magma) I:=[1, 0, 2]; [n le 3 select I[n] else 2*Self(n-2)+3*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 11 2012
(PARI) Vec(1/(1-2*x^2-3*x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 26 2012
(Sage) (1/(1-2*x-3*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 04 2019
(GAP) a:=[1, 0, 2];; for n in [4..40] do a[n]:=2*a[n-2]+3*a[n-3]; od; a; # G. C. Greubel, Jul 04 2019
CROSSREFS
Sequence in context: A210584 A060529 A048073 * A331945 A275067 A295620
KEYWORD
nonn,easy
STATUS
approved