login
A002297
Numerator of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx.
(Formerly M2262 N0893)
5
1, 1, 3, 2, 115, 11, 5887, 151, 259723, 15619, 381773117, 655177, 20646903199, 27085381, 467168310097, 2330931341, 75920439315929441, 12157712239, 5278968781483042969, 37307713155613, 9093099984535515162569, 339781108897078469, 168702835448329388944396777
OFFSET
1,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. G. Medhurst and J. H. Roberts, Evaluation of the integral I_n(b) = (2/Pi)*Integral_{0..inf} (sin x / x)^n cos (bx) dx, Math. Comp., 19 (1965), 113-117.
FORMULA
a(n) = numerator((n/2^(n-1)) * sum((-1)^r*(n-2*r)^(n-1)/(r!*(n-r)!), r=0..n/2)). - Sean A. Irvine, Oct 01 2013
EXAMPLE
1, 1, 3/4, 2/3, 115/192, 11/20, ...
MATHEMATICA
a[n_] := Numerator[ (2/Pi)*Integrate[ (Sin[x]/x)^n, {x, 0, Infinity}] ]; Table[ a[n], {n, 1, 21}] (* Jean-François Alcover, Dec 19 2011 *)
Numerator@Table[Sum[(-1)^k (n-2k)^(n-1) Binomial[n, k], {k, 0, n/2}]/((n-1)! 2^(n-1)), {n, 1, 30}] (* Vladimir Reshetnikov, Sep 02 2016 *)
PROG
(PARI) a(n) = numerator((n/2^(n-1)) * sum(r=0, n/2, (-1)^r*(n-2*r)^(n-1)/(r!*(n-r)!))); \\ Michel Marcus, Oct 02 2013
CROSSREFS
Cf. A002298 (for denominators), A002304, A002305. Essentially the same as A049330, except for the n=4 term.
Sequence in context: A358596 A323745 A109899 * A183270 A152017 A076931
KEYWORD
nonn,frac,easy,nice
EXTENSIONS
a(22)-a(23) from T. D. Noe, Feb 22 2014
STATUS
approved