login
A002184
a(n) = least primitive factor of 2^(2n+1) - 1.
(Formerly M4400 N1855)
4
1, 7, 31, 127, 73, 23, 8191, 151, 131071, 524287, 337, 47, 601, 262657, 233, 2147483647, 599479, 71, 223, 79, 13367, 431, 631, 2351, 4432676798593, 103, 6361, 881, 32377, 179951, 2305843009213693951, 92737, 145295143558111, 193707721, 10052678938039, 228479, 439, 100801, 581283643249112959, 2687, 2593, 167
OFFSET
0,2
COMMENTS
For n > 0, 2^(a(n)-2n-2) == 1 (mod a(n)), since 2^(a(n)-1) == 2^(2n+1) == 1 (mod a(n)). - Thomas Ordowski, Aug 11 2021
a(n) == 1 (mod 2n+1). - Thomas Ordowski, Aug 11 2021
REFERENCES
J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 84.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
S. S. Wagstaff, Jr., The Cunningham Project
FORMULA
a(n) = A112927(2n+1). - Max Alekseyev, Apr 26 2022
CROSSREFS
Sequence in context: A181951 A218963 A125193 * A002588 A327497 A036280
KEYWORD
nonn
EXTENSIONS
More terms from Don Reble, Nov 14 2006
STATUS
approved