login
A001908
E.g.f. exp(-x)/(1-5*x).
(Formerly M3677 N1500)
6
1, 4, 41, 614, 12281, 307024, 9210721, 322375234, 12895009361, 580275421244, 29013771062201, 1595757408421054, 95745444505263241, 6223453892842110664, 435641772498947746481, 32673132937421080986074, 2613850634993686478885921, 222177303974463350705303284
OFFSET
0,2
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 83.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
E.g.f.: A(x) = exp(-x)/(1-5x) satisfies (1-5x)A' - (4+5x)A = 0. - Gheorghe Coserea, Aug 06 2015
a(n+1) = (5n+4) a(n) + 5n a(n-1). - Gheorghe Coserea, Aug 06 2015
a(n) = 5^n*exp(-1/5)*Gamma(n+1,-1/5), where Gamma is the incomplete Gamma function. - Robert Israel, Aug 06 2015
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (5*k - 1) * a(n-k). - Ilya Gutkovskiy, Jan 17 2020
MAPLE
f:= gfun:-rectoproc({a(n+1) = (5*n+4)* a(n) + 5*n*a(n-1), a(0)=1, a(1)=4}, a(n), remember):
seq(f(n), n=0..30); # Robert Israel, Aug 06 2015
MATHEMATICA
nn = 20; Range[0, nn]! CoefficientList[Series[Exp[-x]/(1 - 5 x), {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *)
PROG
(PARI) x='x+O('x^33); Vec(serlaplace(exp(-x)/(1-5*x))) \\ Gheorghe Coserea, Aug 06 2015
CROSSREFS
Column k=5 of A320032.
Sequence in context: A134277 A085340 A230251 * A367836 A367846 A270703
KEYWORD
nonn
STATUS
approved