Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 Nov 06 2024 04:52:36
%S 1,2,4,16,64,128,256,2048,16384,32768,65536,262144,1048576,2097152,
%T 4194304,67108864,1073741824,2147483648,4294967296,17179869184,
%U 68719476736,137438953472,274877906944,2199023255552
%N Successive numerators of Wallis's approximation to Pi/2 (reduced).
%C If p is prime, then a(p-2) == - A001902(p-2) (mod p). Cf. A064169 (third comment) and my formula here. Such pseudoprimes are 1467, 7831, ... Primes p such that a(p-2) == - A001902(p-2) (mod p^2) are 5, 45827, ... Cf. A355959, see also A330719 (third comment). - _Thomas Ordowski_, Oct 19 2024
%D H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.
%H Jonathan Sondow, <a href="https://arxiv.org/abs/math/0401406">A faster product for Pi and a new integral for ln(Pi/2)</a>, arXiv:math/0401406 [math.NT], 2004.
%H Jonathan Sondow, <a href="http://www.jstor.org/stable/30037575">A faster product for Pi and a new integral for ln(Pi/2)</a>, Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Pi.html">Pi</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PiContinuedFraction.html">Pi Continued Fraction</a>
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>
%F (2*2*4*4*6*6*8*8*...*2n*2n*...)/(1*3*3*5*5*7*7*9*...*(2n-1)*(2n+1)*...) for n >= 1.
%F From _Wolfdieter Lang_, Dec 07 2017: (Start)
%F 1/1 * 2/1 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * ...; partial products (reduced). Here the numerators with offset 0.
%F a(n) = numerator(W(n)), for n >= 0, with W(n) = Product_{k=0..n} N(k)/D(k) (reduced), with N(k) = 2*floor((k+1)/2) for k >= 1 and N(0) = 1, and D(k) = 2*floor(k/2) + 1, for k >= 0. (End)
%F a(n) is the numerator of the continued fraction [1;1,1/2,1/3,...,1/n]. - _Thomas Ordowski_, Oct 19 2024
%e From _Wolfdieter Lang_, Dec 07 2017: (Start)
%e The Wallis numerators (N) and denominators (D) with partial products A(n) = A001900(n) and B(n) = A000246(n+1) in unreduced form, and a(n) and b(n) = A001902(n) in reduced form.
%e n, k: 0 1 2 3 4 5 6 7 8 9 10 ...
%e N(k): 1 2 2 4 4 6 6 8 8 10 10 ...
%e D(k): 1 1 3 3 5 5 7 7 9 9 9 ...
%e A(n): 1 2 4 16 64 384 2304 18432 147456 1474560 14745600 ...
%e B(n): 1 1 3 9 45 225 1575 11025 99225 893025 9823275 ...
%e a(n): 1 2 4 16 64 128 256 2048 16384 32768 65536 ...
%e b(n): 1 1 3 9 45 75 175 1225 11025 19845 43659 ...
%e n = 5: numerator(1*2*2*4*4*6/(1*1*3*3*5*5)) = numerator(384/225) = numerator(128/75) = 128. (End)
%t a[n_?EvenQ] := n!!^2/((n - 1)!!^2*(n + 1)); a[n_?OddQ] := ((n - 1)!!^2*(n + 1))/n!!^2; Table[a[n] // Numerator, {n, 0, 23}] (* _Jean-François Alcover_, Jun 19 2013 *)
%Y Denominators are A001902. Subsequence of A000079.
%K nonn,frac,easy
%O 0,2
%A _N. J. A. Sloane_