login
A001898
Denominators of Bernoulli polynomials B(n)(x).
(Formerly M2014 N0749)
7
1, 2, 12, 8, 240, 96, 4032, 1152, 34560, 7680, 101376, 18432, 50319360, 7741440, 6635520, 884736, 451215360, 53084160, 42361159680, 4459069440, 1471492915200, 140142182400, 1758147379200, 152882380800, 417368899584000, 33389511966720, 15410543984640
OFFSET
0,2
REFERENCES
F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]
N. E. Nørlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 459.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
FORMULA
These Bernoulli polynomials B(s) = B(s)(x) are defined by: B(0) = 1; B(s) = (-x/s)*Sum_{t=1..s} (-1)^t*binomial(s, t)*Bernoulli(t)*B(s-t), where Bernoulli(t) are the usual Bernoulli numbers A027641/A027642. Also B(s)(1) = Bernoulli(s).
EXAMPLE
The Bernoulli polynomials B(0)(x) through B(6)(x) are:
1;
-(1/2)*x;
(1/12)*(3*x-1)*x;
-(1/8)*(x-1)*x^2;
(1/240)*(15*x^3-30*x^2+5*x+2)*x;
-(1/96)*(x-1)*(3*x^2-7*x-2)*x^2;
(1/4032)*(63*x^5-315*x^4+315*x^3+91*x^2-42*x-16)*x.
MAPLE
B:=bernoulli; b:=proc(s) option remember; local t; global r; if s=0 then RETURN(1); fi; expand((-r/s)*add( (-1)^t*binomial(s, t)*B(t)*b(s-t), t=1..s)); end; [seq(denom(b(n)), n=0..30)];
MATHEMATICA
B[s_] := B[s] = If[s == 0, 1, (-x/s)*Sum[(-1)^t*Binomial[s, t]*
BernoulliB[t]*B[s - t], {t, 1, s}]] // Factor;
a[n_] := If[n == 0, 1, B[n] // First // Denominator];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 24 2022 *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Entry revised Dec 03 2004
STATUS
approved