OFFSET
4,2
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 4..100
Selden Crary, Richard Diehl Martinez, Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017, Table 1.
J. Riordan, Notes to N. J. A. Sloane, Jul. 1968
FORMULA
E.g.f.: x*(1 + x/2)/(1 - 2*x)^(7/2); or, if shifted, (1+ 6x+ 3x^2/2!) / (1-2x)^(9/2).
a(n) = (2*n-4)!/(4!*(n-4)!*2^(n-4)).
(n-4)*a(n) = (n-2)*(2*n-5)*a(n-1) for n = 5, 6, .. , with a(4) = 1. - Johannes W. Meijer, May 24 2009
G.f.: x^4*2F0(5/2,3;;2x). - R. J. Mathar, Aug 08 2015
MATHEMATICA
nn = 25; t = Range[0, nn]! CoefficientList[Series[x (1 + x/2)/(1 - 2 x)^(7/2), {x, 0, nn}], x]; Drop[t, 1] (* T. D. Noe, Aug 10 2012 *)
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(x*(1 + x/2)/(1 - 2*x)^(7/2))) \\ G. C. Greubel, Aug 13 2017
KEYWORD
nonn,easy
AUTHOR
STATUS
approved