login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001557
a(n) = 1^n + 2^n + ... + 10^n.
(Formerly M4713 N2014)
4
10, 55, 385, 3025, 25333, 220825, 1978405, 18080425, 167731333, 1574304985, 14914341925, 142364319625, 1367428536133, 13202860761145, 128037802953445, 1246324856379625, 12170706132009733, 119179318935377305, 1169842891165484965, 11506994510201252425
OFFSET
0,1
COMMENTS
Conjectures for o.g.f.s for this type of sequences appear in the PhD thesis by Simon Plouffe. See A001552 for the reference. These conjectures are proved in the link given in A196837. - Wolfdieter Lang, Oct 15 2011
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Index entries for linear recurrences with constant coefficients, signature (55, -1320, 18150, -157773, 902055, -3416930, 8409500, -12753576, 10628640, -3628800).
FORMULA
a(n) = Sum_{j=1..10} j^n, n >= 0.
E.g.f.: exp(x) + exp(2*x) + exp(3*x) + exp(4*x) + exp(5*x) + exp(6*x) + exp(7*x) + exp(8*x) + exp(9*x) + exp(10*x). - Vladeta Jovovic, May 08 2002
From Wolfdieter Lang, Oct 15 2011: (Start)
O.g.f.: (2 - 11*x) *(5 - 220*x + 4070*x^2 - 41140*x^3 + 247049*x^4 - 896368*x^5 + 1903836*x^6 - 2143152*x^7 + 966240*x^8)/Product_{j=1..10} (1 - j*x).
From the e.g.f. via Laplace transformation. See the proof in a link under A196837.
(End)
a(n) = A001556(n) + A011557(n). - Michel Marcus, Jul 26 2013
MATHEMATICA
Table[Total[Range[10]^n], {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)
PROG
(Python)
def A001557(n): return sum(i**n for i in range(1, 11)) # Chai Wah Wu, Oct 24 2024
CROSSREFS
Column 10 of array A103438. Cf. A196837.
Sequence in context: A054629 A290359 A030114 * A367938 A197357 A164951
KEYWORD
nonn,easy
EXTENSIONS
More terms from Jon E. Schoenfield, Mar 24 2010
STATUS
approved