OFFSET
1,2
COMMENTS
Number of equivalence classes of all 2^(2^n) maps from GF(2)^n to GF(2), where maps f and g are equivalent iff there exists an invertible n X n binary matrix M, two n-dimensional binary vectors a and b and a binary scalar c such that g(x) = f(Mx+a) + b.x + c.
REFERENCES
R. J. Lechner, Harmonic Analysis of Switching Functions, in A. Mukhopadhyay, ed., Recent Developments in Switching Theory, Acad. Press, 1971, pp. 121-254, esp. p. 186.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1977, p. 431.
LINKS
Elwyn R. Berlekamp and Lloyd R.Welch, Weight distributions of the cosets of the (32,6) Reed-Muller code, IEEE Trans. Information Theory IT-18 (1972), 203-207.
An Braeken, Yuri Borissov, Svetla Nikova and Bart Preneel, Classification of Boolean Functions of 6 Variables or Less with Respect to Cryptographic Properties, IACR, Report 2004/248, 2004-2005.
L. E. Danielsen, Database of Boolean functions
Xiang-Dong Hou, AGL(m,2) acting on R(r,m)/R(s,m), J. Algebra, 171 (1995), 921-938.
I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
CROSSREFS
KEYWORD
nonn,hard,more,nice
AUTHOR
EXTENSIONS
a(7) from Hou (1995)
STATUS
approved