Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4850 N2073 #67 Dec 15 2023 15:16:56
%S 1,12,78,364,1365,4368,12376,31824,75582,167960,352716,705432,1352078,
%T 2496144,4457400,7726160,13037895,21474180,34597290,54627300,84672315,
%U 129024480,193536720,286097760,417225900,600805296,854992152,1203322288,1676056044
%N a(n) = binomial(n,11).
%C Product of 11 consecutive numbers divided by 11!. - _Artur Jasinski_, Dec 02 2007
%C In this sequence there are no primes. - _Artur Jasinski_, Dec 02 2007
%C With a different offset, number of n-permutations (n>=11) of 2 objects: u,v, with repetition allowed, containing exactly (11) u's. Example: n=11, a(0)=1 because we have uuuuuuuuuuu n=12, a(1)=12 because we have uuuuuuuuuuuv, uuuuuuuuuuvu, uuuuuuuuuvuu, uuuuuuuuvuuu, uuuuuuuvuuuu, uuuuuuvuuuuu, uuuuuvuuuuuu, uuuuvuuuuuuu, uuuvuuuuuuuu, uuvuuuuuuuuu uvuuuuuuuuuu, vuuuuuuuuuuu. - _Zerinvary Lajos_, Aug 06 2008
%C Does not satisfy Benford's law (because n^11 does not, see Ross, 2012). - _N. J. A. Sloane_, Feb 09 2017
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
%D Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
%D L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
%D J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A001288/b001288.txt">Table of n, a(n) for n=11..1000</a>
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H Peter J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
%H A. S. Chinchon, <a href="https://fronkonstin.com/2014/12/23/mixing-bendford-googlevis-and-on-line-encyclopedia-of-integer-sequences/">Mixing Benford, GoogleVis And On-Line Encyclopedia of Integer Sequences</a>, 2014. Note: as of Feb 09 2017, the results in this page appear to be incorrect - N. J. A. Sloane, Feb 09 2017.
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=261">Encyclopedia of Combinatorial Structures 261</a>
%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a>.
%H Ângela Mestre, José Agapito, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Mestre/mestre2.html">Square Matrices Generated by Sequences of Riordan Arrays</a>, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
%H Kenneth A. Ross, <a href="http://www.jstor.org/stable/10.4169/math.mag.85.1.036">First Digits of Squares and Cubes</a>, Math. Mag. 85 (2012) 36-42.
%H <a href="/index/Be#Benford">Index entries for sequences related to Benford's law</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1).
%F a(n) = -A110555(n+1,11). - _Reinhard Zumkeller_, Jul 27 2005
%F a(n+10) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)/11!. - _Artur Jasinski_, Dec 02 2007; _R. J. Mathar_, Jul 07 2009
%F G.f.: x^11/(1-x)^12. a(n) = binomial(n,11). - _Zerinvary Lajos_, Aug 06 2008; _R. J. Mathar_, Jul 07 2009
%F From _Amiram Eldar_, Dec 10 2020: (Start)
%F Sum_{n>=11} 1/a(n) = 11/10.
%F Sum_{n>=11} (-1)^(n+1)/a(n) = A001787(11)*log(2) - A242091(11)/10! = 11264*log(2) - 491821/63 = 0.9273021446... (End)
%p seq(binomial(n,11),n=0..30); # _Zerinvary Lajos_, Aug 06 2008, _R. J. Mathar_, Jul 07 2009
%t Table[n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)/11!,{n,1,100}] (* _Artur Jasinski_, Dec 02 2007 *)
%t Binomial[Range[11,50],11] (* _Harvey P. Dale_, Oct 02 2012 *)
%o (PARI) for(n=11, 50, print1(binomial(n,11), ", ")) \\ _G. C. Greubel_, Aug 31 2017
%Y Cf. A110555, A001787, A242091.
%K nonn
%O 11,2
%A _N. J. A. Sloane_
%E Some formulas for other offsets corrected by _R. J. Mathar_, Jul 07 2009