login
A001101
Moran numbers: k such that k/(sum of digits of k) is prime.
21
18, 21, 27, 42, 45, 63, 84, 111, 114, 117, 133, 152, 153, 156, 171, 190, 195, 198, 201, 207, 209, 222, 228, 247, 261, 266, 285, 333, 370, 372, 399, 402, 407, 423, 444, 465, 481, 511, 516, 518, 531, 555, 558, 592, 603
OFFSET
1,1
COMMENTS
Witno conjectures that a(n) ~ c*n log(n)^2 for some c. - Charles R Greathouse IV, Jul 26 2011
REFERENCES
Bill Moran, Problem 2074: The Moran Numbers, J. Rec. Math., Vol. 25 No. 3, pp. 215, 1993.
LINKS
Aaron Toponce, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Amin Witno, Numbers which factor as their digital sum times a prime, International Journal of Open Problems in Computer Science and Mathematics 3:2 (2010), pp. 132-136.
MATHEMATICA
Select[Range[700], PrimeQ[ # / Total[IntegerDigits[#]]]&] (* Jean-François Alcover, Nov 30 2011 *)
PROG
(Haskell)
import Data.List (findIndices)
a001101 n = a001101_list !! (n-1)
a001101_list = map succ $ findIndices p [1..] where
p n = m == 0 && a010051 n' == 1 where
(n', m) = divMod n (a007953 n)
-- Reinhard Zumkeller, Jun 16 2011
(PARI) is(n)=(k->denominator(k)==1&&isprime(k))(n/sumdigits(n)) \\ Charles R Greathouse IV, Jan 10 2014
(Python)
# 1000000 primes: https://primes.utm.edu/lists/small/millions/primes1.zip
# "primes1.txt" must be formatted as a b-file before execution
import csv
with open("primes1.txt", "r") as f:
....reader = csv.reader(f, delimiter=" ")
....primes = set([int(rows[1]) for rows in reader])
i, n = 1, 1
with open("b001101.txt", "w") as f:
....while i <= 10000:
........if n % sum(map(int, str(n))) == 0 and n/sum(map(int, str(n))) in primes:
............f.write("{} {}\n".format(i, n))
............i += 1
........n += 1
# Aaron Toponce, Feb 14 2018
(Python)
from sympy import isprime
def ok(n): s = sum(map(int, str(n))); return s and n%s==0 and isprime(n//s)
print([k for k in range(604) if ok(k)]) # Michael S. Branicky, Mar 28 2022
CROSSREFS
Subsequence of A005349, Niven (or Harshad) numbers.
Sequence in context: A216295 A217058 A172052 * A088341 A105145 A244603
KEYWORD
nonn,base,nice
AUTHOR
Bill Moran (moran1(AT)llnl.gov)
EXTENSIONS
Name corrected by Charles R Greathouse IV, Jan 10 2014
STATUS
approved