login
A001052
a(n) = n*(n-1)*a(n-1)/2 + a(n-2), a(0) = 1, a(1) = 2.
(Formerly M0911 N0343)
2
1, 2, 3, 11, 69, 701, 10584, 222965, 6253604, 225352709, 10147125509, 558317255704, 36859086001973, 2875567025409598, 261713458398275391, 27482788698844325653, 3298196357319717353751, 448582187384180404435789, 68636372866136921596029468
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
a := proc (n) option remember;
if n < 2 then n+1
else binomial(n, 2)*a(n-1)+a(n-2) fi;
end proc;
seq(a(n), n = 0..20); # G. C. Greubel, Sep 20 2019
MATHEMATICA
t = {1, 2}; Do[AppendTo[t, n*(n-1)*t[[-1]]/2 + t[[-2]]], {n, 2, 20}] (* T. D. Noe, Jun 25 2012 *)
PROG
(PARI) a(n)=if(n<2, max(0, n+1), n*(n-1)*a(n-1)/2+a(n-2))
(Magma) I:=[1, 2]; [n le 2 select I[n] else Binomial(n-1, 2)*Self(n-1) + Self(n-2): n in [1..20]]; // G. C. Greubel, Sep 20 2019
(Sage)
def a(n):
if (n<2): return n+1
else: return binomial(n, 2)*a(n-1)+a(n-2)
[a(n) for n in (0..20)] # G. C. Greubel, Sep 20 2019
(GAP) a:=[1, 2];; for n in [3..20] do a[n]:=Binomial(n-1, 2)*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Sep 20 2019
CROSSREFS
Cf. A001046.
Sequence in context: A065597 A256394 A219513 * A184310 A301347 A241811
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Sep 19 2000
STATUS
approved