login
A000996
Shifts 3 places left under binomial transform.
(Formerly M1618 N0632)
8
1, 0, 0, 1, 1, 1, 2, 6, 17, 44, 112, 304, 918, 3040, 10623, 38161, 140074, 528594, 2068751, 8436893, 35813251, 157448068, 713084042, 3315414747, 15805117878, 77273097114, 387692392570, 1996280632656, 10542604575130, 57034787751655, 315649657181821
OFFSET
0,7
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
S. Tauber, On generalizations of the exponential function, Amer. Math. Monthly, 67 (1960), 763-767.
FORMULA
G.f. A(x) satisfies: A(x) = 1 + x^3 * A(x/(1 - x)) / (1 - x). - Ilya Gutkovskiy, Aug 09 2020
MAPLE
a:= proc(n) option remember; local k; if n<=2 then [1, 0, 0][n+1] else 1+ add(binomial(n-3, k) *a(k), k=3..n-3) fi end: seq(a(n), n=0..29); # Alois P. Heinz, Sep 05 2008
MATHEMATICA
a[n_] := a[n] = If[n <= 2 , {1, 0, 0}[[n+1]], 1+Sum [Binomial[n-3, k]*a[k], {k, 3, n-3}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A143983.
Sequence in context: A018024 A364450 A190159 * A309757 A020963 A065068
KEYWORD
nonn,eigen
EXTENSIONS
More terms from Alois P. Heinz, Sep 05 2008
STATUS
approved